Citation: DAI Xiaoyu, QIAO Haiyan, HAN Dongyun, CAO Zubin, ZHANG Xingke. Distillation Separation and Gas Chromatography/Mass Spectrometry Analysis of Fushun Ethylene Bottom Oil[J]. Chinese Journal of Applied Chemistry, ;2018, 35(6): 714-721. doi: 10.11944/j.issn.1000-0518.2018.06.170169 shu

Distillation Separation and Gas Chromatography/Mass Spectrometry Analysis of Fushun Ethylene Bottom Oil

  • Corresponding author: QIAO Haiyan, hyqiao2002@126.com
  • Received Date: 22 May 2017
    Revised Date: 10 July 2017
    Accepted Date: 25 August 2017

    Fund Project: the National Natural Science Foundation of China 21276253Supported by the National Natural Science Foundation of China(No.21276253), the Research Foundation of Liaoning Shihua University(No.2016XJJ-017)the Research Foundation of Liaoning Shihua University 2016XJJ-017

Figures(5)

  • In order to avoid the aromatics waste and environmental pollution caused by ethylene bottom oil as a crude fuel for combustion, Fushun ethylene bottom oil was subjected to atmospheric distillation to obtain a fraction below 280℃. To achieve separation of ethylene bottom oil, the fraction below 280℃ was cut into 12 fractions(40~150℃, 150~170℃, 170~180℃, 180~190℃. 190~200℃, 200~210℃. 210~220℃, 220~230℃, 230~240℃, 240~250℃, 250~260℃. 260~280℃) by atmospheric distillation unit equipped with packed columns. The obtained 12 fractions were analyzed qualitatively and quantitatively by gas chromatography/mass spectrometry with an HP-5MS capillary column as the stationary phase. We hope it could provide valuable analytical data for the extraction of aromatic hydrocarbons, and the deep processing and utilization of ethylene bottom oil. The results indicate that the distillate below 280℃account for 52.2% of the total amount of ethylene bottom oil in Fushun, and mainly contained aromatic hydrocarbons with 1 to 4 rings. The mass fraction of monocyclic, tricyclic and tetracyclic aromatic hydrocarbons is small. The monocyclic aromatic hydrocarbons are mainly derivatives of benzene and indene that account for 5.8% and 6.172% of ethylene bottom oil in Fushun, respectively. The tricyclic and tetracyclic aromatic hydrocarbons account for 2.998% and mainly are acenaphthene, fluorene, anthracene, phenanthrene, pyrene and so on. The most abundant bicyclic aromatic hydrocarbons in Fushun ethylene bottom oil are naphthalene, followed by β-methylnaphthalene, α-methylnaphthalene and 1, 4-dihydronaphthalene with mass fraction of 41.152%, 16.729%, 12.089% and 9.046%, respectively. This research shows that ethylene bottom oil in Fushun can be used as good feedstock for extracting high value-added aromatic fine chemicals.
  • 加载中
    1. [1]

      WANG Songhan. Ethylene Process and Technology(the Best)[M]. Beijing:China Petrochemical Press, 2012:15-25(in Chinese).

    2. [2]

      GE Chuanzhang, LONG Donghui, QIAO Wenming. Structure Analysis and Pyrolysis Behavior of Ethylene Residue[J]. J Pet Sci(Pet Process), 2014,30(6):1052-1058.  

    3. [3]

      Wu M B, Shi Y Y, Li S B. Synthesis and Characterization of Condensed Poly-Nuclear Aromatic Resin Using Heavy Distillate from Ethylene Tar[J]. New Carbon Mater, 2013,55(6):377-377.

    4. [4]

      Kan T, Wang H, Li C. Liquid Fuels From Ethylene Tar by Two-stage Catalytic Hydroprocessing[J]. Energy Sources(Part A Recovery Util Environ Eff), 2015,37(21):2317-2322.

    5. [5]

      YANG Jinghua, CAO Zubin, ZHUANG Dan. Aromatic Solvent Naphtha Produced By-Product C9 Factions[J]. Chem Ind Eng Prog, 2007,26(9):1323-1327.  

    6. [6]

      Wu M, Shi Y, Li S. Synthesis and Characterization of Condensed Polynuclear Aromatic Resin Derived from Ethylene Tar[J]. China Pet Process Petrochem Technol, 2012,14(4):42-47.

    7. [7]

      YANG Zhiwu. Preparation and Study of Pitch-Based General Purpose Carbon Fibers from Ethylene Tar[D]. Tianjin: Tianjin University, 2012(in Chinese).

    8. [8]

      Andreikov E I, Amosova I S, Dikovinkina Y A. Pyrolysis of Polystyrene in Coal Tar and Ethylene Tar Pitches[J]. Russ J Appl Chem, 2012,85(1):89-97. doi: 10.1134/S1070427212010181

    9. [9]

      Cheng X, Zha Q, Zhong J. Needle Coke Formation Derived from Co-Carbonization of Ethylene Tar Pitch and Polystyrene[J]. Fuel, 2009,88(11):2188-2192. doi: 10.1016/j.fuel.2009.05.006

    10. [10]

      Yang J, Nakabayashi K, Jin M. Preparation of Isotropic Pitch-based Carbon Fiber Using Hyper Coal Through Co-carbonation with Ethylene Bottom Oil[J]. J Ind Eng Chem, 2016,34:34397-34404.

    11. [11]

      Yang J, Nakabayashi K, Jin M. Preparation of Isotropic Spinnable Pitch and Carbon Fiber by the Bromination-Dehydrobromination of Biotar and Ethylene Bottom Oil Mixture[J]. J Mater Sci, 2017,52(2):1165-1171. doi: 10.1007/s10853-016-0412-8

    12. [12]

      Han D Y, Cao Z B, Li Y F. Investigation of Naphthalene Extraction from Ethylene Tar[J]. Energy Sources(Part A Recovery Util Environ Eff), 2014,36(9):993-998.

    13. [13]

      LI Yanfang, CAO Zubin, LI Dandong. Isolation of β-Methylnaphthalene from Ethylene Tar Through Extraction-Rectification[J]. Chem Ind Eng Prog, 2010,29(11):2049-2052.

    14. [14]

      ZHANG Zeng, KAN Yiqun, LIU Feng, et al. Extraction of Naphthalene, 1-Methylnaphthalene and 2-Methylnaphyhalene from Ethylene Tar: CN, 102134500. B[P], 2013-05-15(in Chinese).

    15. [15]

      YANG Dongping. Ethylene Tar Integrated Processing Technology: CN, 1970688. B[P], 2010-05-12(in Chinese).

    16. [16]

      Islas C A, Suelves I, Carter J F. Pyrolysis-Gas Chromatography/Mass Spectrometry of Fractions Separated from a Low-Temperature Coal Tar:An Attempt to Develop a General Method for Characterising Structures and Compositions of Heavy Hydrocarbon Liquids[J]. Rapid Commun Mass Spectrom, 2002,16(8):774-784. doi: 10.1002/(ISSN)1097-0231

    17. [17]

      Morgan T J, George A, Áliarez P. Characterization of Molecular Mass Ranges of Two Coal Tar Distillate Fractions(Creosote and Anthracene Oils) and Aromatic Standards by LD-MS, GC-MS, Probe-MS and Size-Exclusion Chromatography[J]. Energy Fuels, 2008,22(5):3275-3292. doi: 10.1021/ef800333v

  • 加载中
    1. [1]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    3. [3]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    4. [4]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    8. [8]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    9. [9]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    12. [12]

      Qiang Wu Wenhua Hou . Teaching Classical Contents Newly: Taking Temperature–Entropy Diagram as an Example. University Chemistry, 2025, 40(4): 399-407. doi: 10.12461/PKU.DXHX202407102

    13. [13]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    17. [17]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    18. [18]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    19. [19]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    20. [20]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

Metrics
  • PDF Downloads(0)
  • Abstract views(1651)
  • HTML views(1001)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return