Citation: CHEN Hang, LIU Chundong, WANG Jianhua. Research Progress on Modification and Effects of Halogen on Nucleic Acid Drugs[J]. Chinese Journal of Applied Chemistry, ;2018, 35(5): 491-499. doi: 10.11944/j.issn.1000-0518.2018.05.170280 shu

Research Progress on Modification and Effects of Halogen on Nucleic Acid Drugs

  • Corresponding author: WANG Jianhua, wjh@cqu.edu.cn
  • Received Date: 10 August 2017
    Revised Date: 10 October 2017
    Accepted Date: 23 October 2017

    Fund Project: the Natural Science Foundation of Chongqing, China Cstc2013jjB0011the Social Programs and Human Security in Chongqing Science Cstc2017shms-xdny0033the Technology Innovation Projects Cstc2017shms-xdny80006Supported by the Natural Science Foundation of Chongqing, China(No.Cstc2013jjB0011), the Social Programs and Human Security in Chongqing Science(No.Cstc2017shms-xdny0033), the Technology Innovation Projects(No.Cstc2017shms-xdny80006)

Figures(12)

  • The halogenation is an invaluable approach for structural modification of drugs in medicine chemistry development. It increases the lipo-solubility, influences on the space charge distribution and improves their drug metabolic activity. Nucleic acid, as antiviral agent, antitumor agent, interferon inducer and immunopotentiator, can also be modified by halogenation. In this review we will discuss the effect on the bioactivity of modified nucleic acids on pyrimidines, purines and ribose by halogenation, and summarize the latest developments in drug research and development of modified nucleic acid.
  • 加载中
    1. [1]

      Cavallo G, Metrangolo P, Milani R. The Halogen Bond[J]. Chem Rev, 2016,116(4):2478-2601. doi: 10.1021/acs.chemrev.5b00484

    2. [2]

      Jansa J, Lycka A, Ruzicka A. Synthesis, Structure and Rearrangement of Iodinated Imidazo[1, 2-C]Pyrimidine-5(6H)-Ones Derived from Cytosine[J]. Tetrahedron, 2015,71(1):27-36. doi: 10.1016/j.tet.2014.11.049

    3. [3]

      Prabhakara C T, Patil S A, Toragalmath S S. Synthesis, Characterization and Biological Approach of Metal Chelates of Some First Row Transition Metal Ions with Halogenated Bidentate Coumarin Schiff Bases Containing N and O Donor Atoms[J]. J Photochem Photobiol B, 2016,157:1-14. doi: 10.1016/j.jphotobiol.2016.02.004

    4. [4]

      Zhao D, Chen C, Liu H. Biological Evaluation of Halogenated Thiazolo[3, 2-A]Pyrimidin-3-One Carboxylic Acid Derivatives Targeting the YycG Histidine Kinase[J]. Eur J Med Chem, 2014,87:500-507. doi: 10.1016/j.ejmech.2014.09.096

    5. [5]

      Mieczkowski A, Roy V, Agrofoglio L A. Preparation of Cyclonucleosides[J]. Chem Rev, 2010,110(4):1828-1856. doi: 10.1021/cr900329y

    6. [6]

      Okesli A, Khosla C, Bassik M C. Human Pyrimidine Nucleotide Biosynthesis as a Target for Antiviral Chemotherapy[J]. Curr Opin Chem Biol, 2017,48:127-134.  

    7. [7]

      Ono K, Ogasawara M, Ohashi A. Inhibitory Effects of Various 5-Halogenated Derivatives of 1-Beta-D-Arabinofuranosyluracil 5'-Triphosphate on DNA Polymerases from Murine Cells and Oncornavirus:Substituent Effects on Inhibitory Action[J]. Biochemistry, 1982,21(5):1019-1024. doi: 10.1021/bi00534a029

    8. [8]

      Qin H, Liu C, Guo Y. Synthesis and Biological Evaluation of Novel C5 Halogen-functionalized S-DABO as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors[J]. Bioorg Med Chem, 2010,18(9):3231-3237. doi: 10.1016/j.bmc.2010.03.025

    9. [9]

       

    10. [10]

      Wang X, Zhang J, Huang Y. Design, Synthesis, and Biological Evaluation of 1-[(2-Benzyloxyl/alkoxyl)methyl]-5-halo-6-aryluracils as Potent HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with an Improved Drug Resistance Profile[J]. J Med Chem, 2012,55(5):2242-2250. doi: 10.1021/jm201506e

    11. [11]

      Yan Z H, Wu H Q, Chen W X. Synthesis and Biological Evaluation of CHX-DAPYs as HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors[J]. Bioorg Med Chem, 2014,22(12):3220-3226. doi: 10.1016/j.bmc.2014.03.020

    12. [12]

      Antonello M, Marino A, Gianluca S. 5-Alkyl-2-(alkylthio)-6-(2, 6-dihalophenylmethyl)-3, 4-dihydropyrimidin-4(3H)-ones:Novel Potent and Selective Dihydro-alkoxy-benzyl-oxopyrimidine Derivatives[J]. J Med Chem, 1999,42(4):619-627. doi: 10.1021/jm980260f

    13. [13]

      Metwally K, Pratsinis H, Kletsas D. Pyrimido[4, 5-c]quinolin-1(2H)-ones as a Novel Class of Antimitotic Agents:Synthesis and In Vitro Cytotoxic Activity[J]. Eur J Med Chem, 2007,42(3):344-350. doi: 10.1016/j.ejmech.2006.10.008

    14. [14]

      Kumarasamy D, Roy B G, Rocha-Pereira J. Synthesis and In Vitro Antiviral Evaluation of 4-Substituted 3, 4-Dihydropyrimidinones[J]. Bioorg Med Chem Lett, 2017,27(2):139-142. doi: 10.1016/j.bmcl.2016.12.010

    15. [15]

      Volpini R, Ben D D, Lambertucci C. Adenosine A2A Receptor Antagonists:New 8-Substituted 9-Ethyladenines as Tools for In Vivo Rat Models of Parkinson's Disease[J]. Chem Med Chem, 2009,4(6):1010-1019.  

    16. [16]

      Endo K, Deguchi K, Matsunaga H. 8-Substituted 2-Alkynyl-N(9)-propargyladenines as A2A Adenosine Receptor Antagonists[J]. Bioorg Med Chem, 2014,22(12):3072-3082. doi: 10.1016/j.bmc.2014.04.041

    17. [17]

      Yin Y, Sasaki S, Taniguchi Y. Effects of 8-Halo-7-Deaza-2'-Deoxyguanosine Triphosphate on DNA Synthesis by DNA Polymerases and Cell Proliferation[J]. Bioorg Med Chem, 2016,24(16):3856-3861. doi: 10.1016/j.bmc.2016.06.030

    18. [18]

      Temburnikar K W, Ross C R, Wilson G M. Antiproliferative Activities of Halogenated Pyrrolo[3, 2-D]Pyrimidines[J]. Bioorg Med Chem, 2015,23(15):4354-4363. doi: 10.1016/j.bmc.2015.06.025

    19. [19]

      Seela F, Ming X. Oligonucleotides Containing 7-Deaza-2'-deoxyinosine as Universal Nucleoside:Synthesis of 7-Halogenated and 7-Alkynylated Derivatives, Ambiguous Base Pairing, and Dye Functionalization by the Alkyne-Azide 'Click' Reaction[J]. Helv Chim Acta, 2010,91(7):1181-1200.  

    20. [20]

      Liu C, Wang J H, Xie Y. Synthesis and DNA/RNA Complementation Studies of Peptide Nucleic Acids Containing 5-Halouracils[J]. MedChemComm, 2017,8(2):385-389. doi: 10.1039/C6MD00536E

    21. [21]

      Jana K, Ganguly B. In Silico Studies to Explore the Mutagenic Ability of 5-Halo/Oxy/Li-Oxy-Uracil Bases with Guanine of DNA Base Pairs[J]. J Phys Chem A, 2014,118(41):9753-9761. doi: 10.1021/jp507471z

    22. [22]

      Ramzaeva N, Eickmeier H, Rosemeyer H. Extraordinary Thermal Stability of an Oligodeoxynucleotide Octamer Constructed from Alternating 7-Deaza-7-iodo Guanine and 5-Iodocytosine Base Pairs-DNA Duplex Stabilization by Halogen Bonds?[J]. Chem Biodiversity, 2014,11(4):532-541. doi: 10.1002/cbdv.v11.4

    23. [23]

      Tak-Tak L, Barbault F, Maurel F. Synthesis of Purin-2-Yl and Purin-6-Yl-Aminoglucitols as C-Nucleosidic ATP Mimics and Biological Evaluation as FGFR3 Inhibitors[J]. Eur J Med Chem, 2011,46(4):1254-1262. doi: 10.1016/j.ejmech.2011.01.048

    24. [24]

      Wolters L P, Smits N W, Guerra C F. Covalency in Resonance-Assisted Halogen Bonds Demonstrated with Cooperativity in N-Halo-Guanine Quartets[J]. Phys Chem Chem Phys, 2015,17(3):1585-1592. doi: 10.1039/C4CP03740E

    25. [25]

      Bilbao N, Vázquez-González V, Aranda M T. Synthesis of 5-/8-Halogenated or Ethynylated Lipophilic Nucleobases as Potential Synthetic Intermediates for Supramolecular Chemistry[J]. Eur J Org Chem, 2015(32):7160-7175.  

    26. [26]

      Parker A J, Stewart J, Donald K J. Halogen Bonding in DNA Base Pairs[J]. J Am Chem Soc, 2012,134(11):5165-5172. doi: 10.1021/ja2105027

    27. [27]

      Ho P S. Biomolecular Halogen Bonds[J]. Top Curr Chem, 2015,358:241-276.  

    28. [28]

      Kozuch S, Martin J M. Halogen Bonds:Benchmarks and Theoretical Analysis[J]. J Chem Theory Comput, 2013,9(4):1918-1931. doi: 10.1021/ct301064t

    29. [29]

      Gomez L, Massari M E, Vickers T. Design and Synthesis of Novel and Selective Phosphodiesterase 2(PDE2a) Inhibitors for the Treatment of Memory Disorders[J]. J Med Chem, 2017,60(5):2037-2051. doi: 10.1021/acs.jmedchem.6b01793

    30. [30]

      Flores R, Rustullet A, Alibes R. Synthesis of Purine Nucleosides Built on a 3-Oxabicyclo[3.2.0]Heptane Scaffold[J]. J Org Chem, 2011,76(13):5369-5383. doi: 10.1021/jo200775x

    31. [31]

      Shakya N, Srivastav N C, Desroches N. 3'-Bromo Analogues of Pyrimidine Nucleosides as a New Class of Potent Inhibitors of Mycobacterium Tuberculosis[J]. J Med Chem, 2010,53(10):4130-4140. doi: 10.1021/jm100165w

    32. [32]

      Ivanov M A, Ludva G S, Mukovnya A V. Synthesis and Biological Properties of Pyrimidine 4'-Fluoronucleosides and 4'-Fluorouridine 5'-o-Triphosphate[J]. Russ J Bioorg Chem, 2010,36(4):488-496. doi: 10.1134/S1068162010040072

    33. [33]

      Gilday L C, Robinson S W, Barendt T A. Halogen Bonding in Supramolecular Chemistry[J]. Chem Rev, 2015,115(15):7118-7195. doi: 10.1021/cr500674c

    34. [34]

      Scholfield M R, Zanden C M V, Carter M. Halogen Bonding(X-bonding):A Biological Perspective[J]. Protein Sci, 2013,22(2):139-152. doi: 10.1002/pro.2201

    35. [35]

      Ford M C, Ho P S. Computational Tools to Model Halogen Bonds in Medicinal Chemistry[J]. J Med Chem, 2016,59(5):1655-1670. doi: 10.1021/acs.jmedchem.5b00997

    36. [36]

      Singh J S. IR and Raman Spectra, Ab Initio and Density Functional Computations of the Vibrational Spectra, Molecular Geometries and Atomic Charges of Uracil and 5-Aminouracil[J]. Spectrochim Acta A, 2014,130:313-328. doi: 10.1016/j.saa.2014.04.034

    37. [37]

      Ortiz S, Alvaerz-Ros M C, Palafox M A. FT-IR and FT-Raman Spectra of 6-Chlorouracil:Molecular Structure, Tautomerism and Solid State Simulation. A Comparison Between 5-Chlorouracil and 6-Chlorouracil[J]. Spectrochim Acta A, 2014,130(17):653-668.  

    38. [38]

      Theruvathu J A, Kim C H, Darwanto A. pH-Dependent Configurations of a 5-Chlorouracil-Guanine Base Pair[J]. Biochemistry, 2009,48(47):11312-11318. doi: 10.1021/bi901154t

    39. [39]

      Theruvathu J A, Kim C H, Rogstad D K. Base Pairing Configuration and Stability of an Oligonucleotide Duplex Containing a 5-Chlorouracil-Adenine Base Pair[J]. Biochemistry, 2009,48(31):7539-7546. doi: 10.1021/bi9007947

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    3. [3]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    4. [4]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    5. [5]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    6. [6]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    10. [10]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    12. [12]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    13. [13]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    16. [16]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    20. [20]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

Metrics
  • PDF Downloads(6)
  • Abstract views(435)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return