Citation: FENG Cui, MIN Man, XIE Rongrong, REN Jianhui, CHEN Lin. Synthesis and Antioxidant Activity of Coumarin Schiff Base Derivatives[J]. Chinese Journal of Applied Chemistry, ;2018, 35(5): 538-543. doi: 10.11944/j.issn.1000-0518.2018.05.170279 shu

Synthesis and Antioxidant Activity of Coumarin Schiff Base Derivatives

  • Corresponding author: CHEN Lin, chenlin128@126.com
  • Received Date: 10 August 2017
    Revised Date: 6 December 2017
    Accepted Date: 24 January 2018

    Fund Project: Supported by the Science and Technology Planning Project of Guangdong Province, China(No.2012B061700040); the Medical Science and Technology Research Fund Project of Guangdong Province, China(No.201618171249486)the Medical Science and Technology Research Fund Project of Guangdong Province, China 201618171249486the Science and Technology Planning Project of Guangdong Province, China 2012B061700040

Figures(4)

  • Two Coumarin Schiff base derivatives were synthesized from 2, 3, 4-trimethoxybenzaldehyde by demethylation, Knoevenagel and nucleophilic addition reaction. Structures of the corresponding products were elucidated through the analysis of 1H NMR and MS spectra. The antioxidant activities of two derivatives were evaluated by quenching 2, 2'-diphenyl-1-picrylhydrazyl radical(DPPH), 2, 2'-azinobis(3-ethylbenzothiazoline-6-sulphonate) ammonium salt cationic radical(ABTS), and hydroxyl free radical. The result shows that the target compounds can quench the three types of free radicals. Compared to 7, 8-dimethoxy-3-aminocoumarin, two coumarin Schiff base derivatives have higher quenching activity for DPPH and hydroxyl free radical and have higher antioxidant activity.
  • 加载中
    1. [1]

      Reddy N S, Mallireddigari M R, Cosenza S. Synthesis of New Coumarin 3-(N-aryl) Sulfonamides and Their Anticancer Activity[J]. Bioorg Med Chem Lett, 2004,14(15):4093-4097. doi: 10.1016/j.bmcl.2004.05.016

    2. [2]

      Tyagi Y K, Kumar A, Raj H G. Synthesis of Novel Amino Andacetyl Amino-4-methylcoumarins and Evaluation of Their Antioxidant Activity[J]. Eur J Med Chem, 2005,40(4):413-420. doi: 10.1016/j.ejmech.2004.09.002

    3. [3]

      Yu D, Suzuki M, Xie L. Recent Progress in the Development of Coumarin Derivatives as Potent Anti-HIV Agents[J]. Med Res Rev, 2003,23(3):322-345. doi: 10.1002/(ISSN)1098-1128

    4. [4]

      Cherng J M, Wen C, Chiang L C. Immunomodulatory Activities of Common Vegetables and Spices of Umbelliferae and Its Related Coumarins and Flavonoids[J]. Food Chem, 2008,106(3):944-950. doi: 10.1016/j.foodchem.2007.07.005

    5. [5]

      Smyth T, Ramachandran V N, Smyth W F. A Study of the Antimicrobial Activity of Selected Naturally Occurring and Synthetic Coumarins[J]. Int J Antimicro Agents, 2009,33(5):421-426. doi: 10.1016/j.ijantimicag.2008.10.022

    6. [6]

      Pan R, Gao X H, Li Y. Anti-arthritic Effect of Scopoletin, a Coumarin Compound Occurring in Erycibe obtusifolia Benth Stems, is Associated with Decreased Angiogenesis in Synovium[J]. Fundam Clin Pharmacol, 2010,24(4):477-490.  

    7. [7]

      Abdelhafez O M, Amin K M, Batran R Z. Synthesis, Anticoagulant and PIVKA-Ⅱ Induced by New 4-Hydroxycoumarin Derivatives[J]. Bioorg Med Chem, 2010,18(10)3371. doi: 10.1016/j.bmc.2010.04.009

    8. [8]

      Bandyopadhyay U, Das D, Banerjee R K. Reactive Oxygen Species:Oxidative Damage and Pathogenesis[J]. Curr Sci, 1999,77(5):658-666.  

    9. [9]

      Dhalla N S, Temsah R M, Netticadan T. Role of Oxidative Stress in Cardiovascular Diseases[J]. J Hypertens, 2000,18(6):655-673. doi: 10.1097/00004872-200018060-00002

    10. [10]

      Sayre L M, Smith M A, Perry G. Chemistry and Biochemistry of Oxidative Stress in Neurodegenerative Disease[J]. Curr Med Chem, 2001,8(7):721-738. doi: 10.2174/0929867013372922

    11. [11]

      CHEN Junyu, LI Junwei, LIANG Yuan. Reactive Oxygen Species(ROS):A Double-edged Sword for Tumor Progression[J]. Chinese J Lab Diagn, 2016,20(9):1598-1600.  

    12. [12]

      Ames B N, Shigenaga M K, Hagen T M. Oxidants, Antioxidants, and the Degenerative Diseases of Aging[J]. Proc Natl Acad Sci U.S.A, 1993,90(17):7915-7922. doi: 10.1073/pnas.90.17.7915

    13. [13]

      Nicolaides D N, Gautam D R, Litinas K E. Synthesis and Evaluation of the Antioxidant and Antiinflammatory Activities of Some Benzo[J]. Eur J Med Chem, 2004,39(4):323-332. doi: 10.1016/j.ejmech.2004.01.003

    14. [14]

      Desai S Β, Desai P B, Desaik R. Synthesis of Some Schiff Bases Thiazolidinones and Azetidinones Derivedfrom 2, 6-Diaminobenzo[1, 2-d:4, 5-d'] bisthiazole and Their Anticancer Activities[J]. Heterocycl Commun, 2001,7(1):83-90.  

    15. [15]

      Singh S B, Pettit G R. Isolation, Structure, and Synthesis of Combretastatin C-1[J]. J Org Chem, 1989,54(17):2390-2396.  

    16. [16]

      Donald J R, Edwards M G, Taylor R J K. Tandem Oxime Formation Epoxide Ring Opening Sequences for the Preparation of Oxazines Related to the Trichodermamides[J]. Tetrahedron Lett, 2007,48(30):5201-5204. doi: 10.1016/j.tetlet.2007.05.145

    17. [17]

      Vukovic N, Sukdolak S, Solujic S. Substituted Imino and Amino Derivatives of 4-Hydroxycoumarins as Novel Antioxidant, Antibacterial and Antifungal Agents:Synthesis and in Vitro Assessments[J]. Food Chem, 2010,120(4):1011-1018. doi: 10.1016/j.foodchem.2009.11.040

    18. [18]

      Pan Y, He C, Wang H. Antioxidant Activity of Microwave-assisted Extract of Buddleia officinalis and Its Major Active Component[J]. Food Chem, 2010,121(2):497-502. doi: 10.1016/j.foodchem.2009.12.072

    19. [19]

      FENG Huiping, LI Yicong. Primary Study on the Reaction Mechanism of Hydroxyl Radical and Salicylic Acid[J]. Chinese J Spectrosc Lab, 2009,50(4):931-938.  

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    3. [3]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    4. [4]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    15. [15]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    16. [16]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    19. [19]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(3)
  • Abstract views(1379)
  • HTML views(863)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return