Citation: YUAN Ning, DU Bingjie, JIA Xiaoxia, YANG Jiangfeng, LI Jinping. Research Progress in Preparation Technology and Application of Bimetal Metal-Organic Frameworks Materials[J]. Chinese Journal of Applied Chemistry, ;2018, 35(5): 500-510. doi: 10.11944/j.issn.1000-0518.2018.05.170243 shu

Research Progress in Preparation Technology and Application of Bimetal Metal-Organic Frameworks Materials

  • Corresponding author: YANG Jiangfeng, yangjiangfeng@tyut.edu.cn
  • Received Date: 11 July 2017
    Revised Date: 29 August 2017
    Accepted Date: 30 September 2017

    Fund Project: the National Natural Science Foundation of China 21676175Supported by the National Natural Science Foundation of China(No.21676175)

Figures(9)

  • Metal-organic frameworks(MOFs) have the diversity of topological structure and rich surface area, which make it have potential application value in the field of catalysis and adsorption. Because of the bimetallic MOFs have two metal centers, it has higher catalytic activity sites and adsorption sites than the single metal MOFs. So the selectivity of adsorption, catalytic activity, and stability of structure have all been improved. In this review, the synthesis methods, structure properties, performance improvement and application prospects of bimetallic MOFs are summarized.
  • 加载中
    1. [1]

      Furukawa H, Cordova K E, O'Keeffe M. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science, 2013,341(6149)1230444. doi: 10.1126/science.1230444

    2. [2]

      Furukawa H, Müller U, Yaghi O M. "Heterogeneity Within Order" in Metal-Organic Frameworks[J]. Angew Chem Int Ed, 2015,54(11):3417-3430. doi: 10.1002/anie.201410252

    3. [3]

      James S L. Metal-Organic Frameworks[J]. Chem Soc Rev, 2003,32(5):276-288. doi: 10.1039/b200393g

    4. [4]

      Kitagawa S. Metal-Organic Frameworks(MOFs)[J]. Chem Soc Rev, 2014,43(16):5415-5418. doi: 10.1039/C4CS90059F

    5. [5]

      Zhou H C, Long J R, Yaghi O M. Introduction to Metal-Organic Frameworks[J]. Chem Rev, 2012,112(2):673-674. doi: 10.1021/cr300014x

    6. [6]

      He Y, Zhou W, Qian G. Methane Storage in Metal-Organic Frameworks[J]. Chem Soc Rev, 2014,43(16):5657-5678. doi: 10.1039/C4CS00032C

    7. [7]

      Liu J, Thallapally P K, McGrail B P. Progress in Adsorption-Based CO2 Capture by Metal-Organic Frameworks[J]. Chem Soc Rev, 2012,41(6):2308-2322. doi: 10.1039/C1CS15221A

    8. [8]

      CHAEMCHUEN S, ZHOU Kui, YAO Chen. Alkali-Metal Tuning of Adsorption Sites in Metal Organic Frameworks MOF-5 for Carbon Dioxide/Methane Separation at Ambient Conditions[J]. Chinese J Appl Chem, 2015,32(5):552-556. doi: 10.11944/j.issn.1000-0518.2015.05.140311 

    9. [9]

      Wu H, Gong Q, Olson D H. Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks[J]. Chem Rev, 2012,112(2):836-868. doi: 10.1021/cr200216x

    10. [10]

      Li J R, Sculley J, Zhou H C. Metal-Organic Frameworks for Separations[J]. Chem Rev, 2011,112(2):869-932.  

    11. [11]

      Qiu S, Xue M, Zhu G. Metal-Organic Framework Membranes:From Synthesis to Separation Application[J]. Chem Soc Rev, 2014,43(16):6116-6140. doi: 10.1039/C4CS00159A

    12. [12]

      Van de Voorde B, Bueken B, Denayer J. Adsorptive Separation on Metal-Organic Frameworks in the Liquid Phase[J]. Chem Soc Rev, 2014,43(16):5766-5788. doi: 10.1039/C4CS00006D

    13. [13]

      Hu Z, Deibert B J, Li J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection[J]. Chem Soc Rev, 2014,43(16):5815-5840. doi: 10.1039/C4CS00010B

    14. [14]

      McGrail B P, Thallapally P K, Blanchard J. Metal-Organic Heat Carrier Nanofluids[J]. Nano Energy, 2013,2(5):845-855. doi: 10.1016/j.nanoen.2013.02.007

    15. [15]

      Annapureddy H V, Nune S K, Motkuri R K. A Combined Experimental and Computational Study on the Stability of Nanofluids Containing Metal Organic Frameworks[J]. J Phys Chem B, 2015,119(29):8992-8999. doi: 10.1021/jp5079086

    16. [16]

      Dhakshinamoorthy A, Garcia H. Metal-Organic Frameworks as Solid Catalysts for the Synthesis of Nitrogen-Containing Heterocycles[J]. Chem Soc Rev, 2014,43(16):5750-5765. doi: 10.1039/C3CS60442J

    17. [17]

      Liu J, Chen L, Cui H. Applications of Metal Organic Frameworks in Heterogeneous Supramolecular Catalysis[J]. Chem Soc Rev, 2014,43(16):6011-6061. doi: 10.1039/C4CS00094C

    18. [18]

      Zhang T, Lin W. Metal-Organic Frameworks for Artificial Photosynthesis and Photocatalysis[J]. Chem Soc Rev, 2014,43(16):5982-5993. doi: 10.1039/C4CS00103F

    19. [19]

      Canivet J, Fateeva A, Guo Y. Water Adsorption in MOFs:Fundamentals and Applications[J]. Chem Soc Rev, 2014,43(16):5594-5617. doi: 10.1039/C4CS00078A

    20. [20]

      Barea E, Montoro C, Navarro J A. Toxic Gas Removal-Metal-Organic Frameworks for the Capture and Degradation of Toxic Gases and Vapours[J]. Chem Soc Rev, 2014,43(16):5419-5430. doi: 10.1039/C3CS60475F

    21. [21]

      Jeon J W, Sharma R, Meduri P. In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High-Performance Supercapacitors[J]. ACS Appl Mater Interfaces, 2014,6(10):7214-7222. doi: 10.1021/am500339x

    22. [22]

      ZHANG Zhuoming, YANG Jiangfeng, WANG Yong. Effect of Water Molecules on Structure and Properties of Metal-Organic Frameworks[J]. Chinese J Inorg Chem, 2015,31(4):627-634.  

    23. [23]

      Burrows A D. Mixed-Component Metal-Organic Frameworks(MC-MOFs):Enhancing Functionality Through Solid Solution Formation and Surface Modifications[J]. CrystEngComm, 2011,13(11):3623-3642. doi: 10.1039/c0ce00568a

    24. [24]

      Han S S, Mendoza-Cortés J L, Goddard Ⅲ W A. Recent Advances on Simulation and Theory of Hydrogen Storage in Metal Organic Frameworks and Covalent Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1460-1476.  

    25. [25]

      Chun H, Dybtsev D N, Kim H. Synthesis, X-ray Crystal Structures, and Gas Sorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs:Implications for Hydrogen Storage in Porous Materials[J]. Chem-Eur J, 2005,11(12):3521-3529. doi: 10.1002/(ISSN)1521-3765

    26. [26]

      Burrows A D, Frost C G, Mahon M F. Post-Synthetic Modification of Tagged Metal-Organic Frameworks[J]. Angew Chem Int Ed, 2008,47(44):8482-8486. doi: 10.1002/anie.v47:44

    27. [27]

      Wu T, Bu X, Zhang J. New Zeolitic Imidazolate Frameworks:From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands[J]. Chem Mater, 2008,20(24):7377-7382. doi: 10.1021/cm802400f

    28. [28]

      Zhang W, Shi Y, Li C. Synthesis of Bimetallic MOFs MIL-100(Fe-Mn) as an Efficient Catalyst for Selective Catalytic Reduction of NO(x) with NH3[J]. Catal Lett, 2016,146(10):1956-1964. doi: 10.1007/s10562-016-1840-4

    29. [29]

      Chen Y Z, Wang C, Wu Z Y. From Bimetallic Metal-Organic Framework to Porous Carbon:High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis[J]. Adv Mater, 2015,27(34):5010-5016. doi: 10.1002/adma.201502315

    30. [30]

      Zhai Q G, Bu X, Mao C. An Ultra-Tunable Platform for Molecular Engineering of High-Performance Crystalline Porous Materials[J]. Nat Commun, 2016,713645. doi: 10.1038/ncomms13645

    31. [31]

      Song X, Oh M, Lah M S. Hybrid Bimetallic Metal-Organic Frameworks:Modulation of the Framework Stability and Ultralarge CO2 Uptake Capacity[J]. Inorg Chem, 2013,52(19):10869-10876. doi: 10.1021/ic400844v

    32. [32]

      Bajpai A, Chandrasekhar P, Govardhan S. Single Crystal-to-Single Crystal Site-Selective Postsynthetic Metal Exchange in a Zn-MOF Based on Semi-Rigid Tricarboxylic Acid and Access to Bimetallic MOFs[J]. Chem-Eur J, 2015,21(7):2759-2765. doi: 10.1002/chem.201406098

    33. [33]

      Stock N, Biswas S. Synthesis of Metal-Organic Frameworks(MOFs):Routes to Various MOF Topologies, Morphologies, and Composites[J]. Chem Rev, 2011,112(2):933-969.  

    34. [34]

      Braga D, Giaffreda S L, Grepioni F. Mechanochemical Preparation of Molecular and Supramolecular Organometallic Materials and Coordination Networks[J]. Dalton Trans, 2006(10):1249-1263. doi: 10.1039/b516165g

    35. [35]

      Wang L J, Deng H, Furukawa H. Synthesis and Characterization of Metal-Organic Framework-74 Containing 2, 4, 6, 8, and 10 Different Metals[J]. Inorg Chem, 2014,53(12):5881-5883. doi: 10.1021/ic500434a

    36. [36]

      Ma S, Sun D, Ambrogio M. Framework-Catenation Isomerism in Metal-Organic Frameworks and Its Impact on Hydrogen Uptake[J]. J Am Chem Soc, 2007,129(7):1858-1859. doi: 10.1021/ja067435s

    37. [37]

      Ma S, Wang X S, Manis E S. Metal-Organic Framework Based on a Trinickel Secondary Building Unit Exhibiting Gas-Sorption Hysteresis[J]. Inorg Chem, 2007,46(9):3432-3434. doi: 10.1021/ic070338v

    38. [38]

      Kaur G, Rai R K, Tyagi D. Room-Temperature Synthesis of Bimetallic Co-Zn Based Zeolitic Imidazolate Frameworks in Water for Enhanced CO2 and H2 Uptakes[J]. J Mater Chem A, 2016,4(39):14932-14938. doi: 10.1039/C6TA04342A

    39. [39]

      LI Zhihua, LIU Hong, SONG Linyong. Synthesis of Dual-Metal Functionalized MOF-74 and Its Adsorption Properties[J]. Chinese J Inorg Chem, 2017,33(2):237-242. doi: 10.11862/CJIC.2017.042

    40. [40]

      Fu Y, Xu L, Shen H. Tunable Catalytic Properties of Multi-Metal-Organic Frameworks for Aerobic Styrene Oxidation[J]. Chem Eng J, 2016,299:135-141. doi: 10.1016/j.cej.2016.04.102

    41. [41]

      Zhai Q G, Bu X, Mao C. Systematic and Dramatic Tuning on Gas Sorption Performance in Heterometallic Metal-Organic Frameworks[J]. J Am Chem Soc, 2016,138(8):2524-2527. doi: 10.1021/jacs.5b13491

    42. [42]

      Qi Y J, Zhao D, Li X X. Indium-Based Heterometal-Organic Frameworks with Different Nanoscale Cages:Syntheses, Structures, and Gas Adsorption Properties[J]. Cryst Growth Des, 2017,17(3):1159-1165. doi: 10.1021/acs.cgd.6b01538

    43. [43]

      Lalonde M, Bury W, Karagiaridi O. Transmetalation:Routes to Metal Exchange within Metal-Organic Frameworks[J]. J Mater Chem A, 2013,1(18):5453-5468. doi: 10.1039/c3ta10784a

    44. [44]

      Wang J H, Zhang Y, Li M. Solvent-Assisted Metal Metathesis:A Highly Efficient and Versatile Route Towards Synthetically Demanding Chromium Metal-Organic Frameworks[J]. Angew Chem Int Ed, 2017,129(23):6578-6582. doi: 10.1002/ange.201701217

    45. [45]

      Kole G K, Vittal J J. Solid-State Reactivity and Structural Transformations Involving Coordination Polymers[J]. Chem Soc Rev, 2013,42(4):1755-1775. doi: 10.1039/C2CS35234F

    46. [46]

      YANG Jiangfeng, LI Jinping, JIA Xiaoxia, et al. Method for Preparing Double-Metal MOFs Material through Metal Replacement Aided by Steam: CN, 201610794646. 0[P], 2016-12-14(in Chinese).

    47. [47]

      Denysenko D, Werner T, Grzywa M. Reversible Gas-Phase Redox Processes Catalyzed by Co-Exchanged MFU-4l(arge)[J]. Chem Commun, 2012,48(9):1236-1238. doi: 10.1039/C2CC16235K

    48. [48]

      Dinca M, Dailly A, Liu Y. Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites[J]. J Am Chem Soc, 2006,128(51):16876-16883. doi: 10.1002/chem.201204358

    49. [49]

      Wang X S, Chrzanowski M, Wojtas L. Formation of a Metalloporphyrin-Based Nanoreactor by Postsynthetic Metal-Ion Exchange of a Polyhedral-Cage Containing a Metal-Metalloporphyrin Framework[J]. Chem-Eur J, 2013,19(10):3297-3301. doi: 10.1002/chem.201204358

    50. [50]

      Bradshaw D, Warren J E, Rosseinsky M J. Reversible Concerted Ligand Substitution at Alternating Metal Sites in an Extended Solid[J]. Science, 2007,315(5814):977-980. doi: 10.1126/science.1135445

    51. [51]

      Han Y, Chilton N F, Li M. Post-Synthetic Monovalent Central-Metal Exchange, Specific I2 Sensing, and Polymerization of a Catalytic [3 3] Grid of[Cu5Cu4L6]·(Ⅰ)2·13H2O[J]. Chem-Eur J, 2013,19(20):6321-6328. doi: 10.1002/chem.201204115

    52. [52]

      Kim M, Cahill J F, Fei H. Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks[J]. J Am Chem Soc, 2012,134(43):18082-18088. doi: 10.1021/ja3079219

    53. [53]

      Wang X J, Li P Z, Liu L. Significant Gas Uptake Enhancement by Post-Exchange of Zinc(Ⅱ) with Copper(Ⅱ) Within a Metal-Organic Framework[J]. Chem Commun, 2012,48(83):10286-10288. doi: 10.1039/c2cc34921c

    54. [54]

      Zou L, Feng D, Liu T F. A Versatile Synthetic Rroute for the Preparation of Titanium Metal Organic Frameworks[J]. Chem Sci, 2016,7(2):1063-1069. doi: 10.1039/C5SC03620H

    55. [55]

      Chen Y, Yang C, Wang X. Vapor Phase Solvents Loaded in Zeolite as the Sustainable Medium for the Peparation of Cu-BTC and ZIF-8[J]. Chem Eng J, 2017,313:179-186. doi: 10.1016/j.cej.2016.12.055

    56. [56]

      Kumar G, Gupta R. Molecularly Designed Architectures-The Metalloligand Way[J]. Chem Soc Rev, 2013,42(24):9403-9453. doi: 10.1039/c3cs60255a

    57. [57]

      Falkowski J M, Wang C, Liu S. Actuation of Asymmetric Cyclopropanation Catalysts:Reversible Single-Crystal to Single-Crystal Reduction of Metal-Organic Frameworks[J]. Angew Chem Int Ed, 2011,123(37):8833-8837. doi: 10.1002/ange.201104086

    58. [58]

      Xie Z, Ma L, deKrafft K E. Porous Phosphorescent Coordination Polymers for Oxygen Sensing[J]. J Am Chem Soc, 2009,132(3):922-923.  

    59. [59]

      Kitaura R, Onoyama G, Sakamoto H. Immobilization of a Metallo Schiff Base into a Microporous Coordination Polymer[J]. Angew Chem Int Ed, 2004,116(20):2738-2741. doi: 10.1002/(ISSN)1521-3757

    60. [60]

      Chen B, Zhao X, Putkham A. Surface Interactions and Quantum Kinetic Molecular Sieving for H2 and D2 Adsorption on a Mixed Metal-Organic Framework Mmaterial[J]. J Am Chem Soc, 2008,130(20):6411-6423. doi: 10.1021/ja710144k

    61. [61]

      Feng D, Gu Z Y, Li J R. Zirconium-Metalloporphyrin PCN-222:Mesoporous Metal Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts[J]. Angew Chem Int Ed, 2012,124(41):10453-10456. doi: 10.1002/ange.201204475

    62. [62]

      Morris W, Volosskiy B, Demir S. Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal Organic Frameworks[J]. Inorg Chem, 2012,51(12):6443-6445. doi: 10.1021/ic300825s

    63. [63]

      Chen Y, Hoang T, Ma S. Biomimetic Catalysis of a Porous Iron-Based Metal-Metalloporphyrin Framework[J]. Inorg Chem, 2012,51(23):12600-12602. doi: 10.1021/ic301923x

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    5. [5]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    6. [6]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    7. [7]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    8. [8]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    18. [18]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    19. [19]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    20. [20]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

Metrics
  • PDF Downloads(11)
  • Abstract views(421)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return