Citation: LÜ Yue, MAO Shengxue, LI Fei, ZHU Xiaolei, LÜ Chengwei. Efficient Synthesis of 2-Amino-3-cyano-4H-pyran Derivatives via Catalyst-Free One-Pot Tri-Component Reaction[J]. Chinese Journal of Applied Chemistry, ;2018, 35(5): 518-525. doi: 10.11944/j.issn.1000-0518.2018.05.170220 shu

Efficient Synthesis of 2-Amino-3-cyano-4H-pyran Derivatives via Catalyst-Free One-Pot Tri-Component Reaction

  • Corresponding author: LÜ Chengwei, chengweilv@126.com
  • Received Date: 23 June 2017
    Revised Date: 7 September 2017
    Accepted Date: 18 October 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21403100), the Doctoral Scientific Research Foundation of Liaoning Province(No.20141100)the National Natural Science Foundation of China 21403100the Doctoral Scientific Research Foundation of Liaoning Province 20141100

Figures(1)

  • 4H-Pyrans and 4H-pyran-annulated heterocyclic scaffolds are the key building blocks of numerous natural products and represent a "drug-like" structural motif with a broad spectrum of applications in organic synthesis and medicinal chemistry. In this paper, a convenient one-pot three-component strategy was conducted successfully under catalyst-free condition employing water as reaction medium and ethanol as co-solvent. Three kinds, over fifty 2-amino-3-cyano-4H-pyran derivatives were synthesized in good to excellent yields by the condensation of a series of aromatic aldehydes with malononitrile and different 1, 3-dicarbonyl compounds. Broad substrate scope, systematic characterization, eliminated catalyst, mild reaction condition, simple purification procedure are the best advantages in this methodology.
  • 加载中
    1. [1]

      Dekamin M G, Eslami M, Maleki A. Potassium Phthalimide-N-Oxyl:A Novel, Efficient, and Simple Organocatalyst for the One-pot Three-component Synthesis of Various 2-Amino-4H-Chromene Derivatives in Water[J]. Tetrahedron, 2013,69(3):1074-1085. doi: 10.1016/j.tet.2012.11.068

    2. [2]

      Karami B, Kiani M. Silica-Supported Molybdic Acid:Preparation, Characterization, and Its Catalytic Application in Synthesis of Pyranocoumarins[J]. Monatsh Chem, 2016,147(6):1117-1124. doi: 10.1007/s00706-015-1551-3

    3. [3]

      Zolfigol M A, Safaiee M, Bahrami-Nejad N. Dendrimeric Magnetic Nanoparticle Cores with Co-phthalocyanine Tags and Their Application in the Synthesis of Tetrahydrobenzo[b]pyran Derivatives[J]. New J Chem, 2016,40(6):5071-5079. doi: 10.1039/C6NJ00243A

    4. [4]

      Bolognese A, Correale G, Manfra M. Antitumor Agents.3.Design, Synthesis, and Biological Evaluation of New Pyridoisoquinolindione and Dihydrothienoquinolindione Derivatives with Potent Cytotoxic Activity[J]. J Med Chem, 2004,47(4):849-858. doi: 10.1021/jm030918b

    5. [5]

      Magar R L, Thorat P B, Jadhav V B. Silica Gel Supported Polyamine:A Versatile Catalyst for One Pot Synthesis of 2-Amino-4H-Chromene Derivatives[J]. J Mol Catal A Chem, 2013,374/375:118-124. doi: 10.1016/j.molcata.2013.03.022

    6. [6]

      Tabassum S, Govindaraju S, Pasha M A. Ultrasound Mediated, Iodine Catalyzed Green Synthesis of Novel 2-Amino-3-Cyano-4H-Pyran Derivatives[J]. Ultrason Sonochem, 2015,24:1-7. doi: 10.1016/j.ultsonch.2014.12.006

    7. [7]

      Bora P P, Bihani M, Bez G. Beyond Enzymatic Promiscuity:Asymmetric Induction by L-Proline on Lipase Catalyzed Synthesis of Polyfunctionalized 4H-Pyrans[J]. RSC Adv, 2015,5(62):50597-50603. doi: 10.1039/C5RA08785F

    8. [8]

      Zolfigol M A, Yarie M, Baghery S. Application of {[4, 4'-BPyH] [C(CN)3]2} as a Bifunctional Nanostructured Molten Salt Catalyst for the Preparation of 2-Amino-4H-Chromene Derivatives under Solvent-free and Benign Conditions[J]. Synlett, 2016,27(9):1418-1422. doi: 10.1055/s-00000083

    9. [9]

      Kiyani H, Jalali M S. Facile and Efficient Access to Tetrahydrobenzo[b]pyrans Catalyzed by N, N-Dimethylbenzylamine[J]. Heterocycles, 2016,92(1):75-85. doi: 10.3987/COM-15-13360

    10. [10]

      Abbaspour-Gilandeh E, Aghaei-Hashjin M, Yahyazadeh A. (CTA)3[SiW12]-Li+-MMT:A Novel, Efficient and Simple Nanocatalyst for Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-4H-Chromene Derivatives via an Eco-Friendly Multicomponent Reaction in Water[J]. RSC Adv, 2016,6(60):55444-55462. doi: 10.1039/C6RA09818E

    11. [11]

      Bayer T A, Schäfer S, Breyhan H. A Vicious Circle:Role of Oxidative Stress, Intraneuronal a Beta and Cu in Alzheimer's Disease[J]. Clin Neuropath, 2006,25(4):163-171.  

    12. [12]

      Beagley P, Blackie M A L, Chibale K. Synthesis and Antiplasmodial Activity in Vitro of New Ferrocene-Chloroquine Analogues[J]. Dalton Trans, 2003(15):3046-3051. doi: 10.1039/B303335J

    13. [13]

      Kumar D, Reddy V B, Sharad S. A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-Amino-4H-Pyrans and 2-Amino-5-Oxo-5, 6, 7, 8-Tetrahydro-4H-Chromenes[J]. Eur J Med Chem, 2009,44(9):3805-3809. doi: 10.1016/j.ejmech.2009.04.017

    14. [14]

      Moghaddas M, Davoodnia A. Atom-Economy Click Synthesis of Tetrahydrobenzo[b]pyrans Using Cabon-Based Solid Acid as a Novel, Highly Efficient and Reusable Heterogeneous Catalyst[J]. Res Chem Intermed, 2015,41(7):4373-4386. doi: 10.1007/s11164-014-1536-6

    15. [15]

      Heravi M M, Jani B A, Derikvand F. Three Component, One-Pot Synthesis of Dihydropyrano[3, 2-c]chromene Derivatives in the Presence of H6P2W18O62·18H2O as a Green and Recyclable Catalyst[J]. Catal Commun, 2008,10(3):272-275. doi: 10.1016/j.catcom.2008.08.023

    16. [16]

      Khurana J M, Kumar S. Tetrabutylammonium Bromide(TBAB):A Neutral and Efficient Catalyst for the Synthesis of Biscoumarin and 3, 4-Dihydropyrano[c]chromene Derivatives in Water and Solvent-free Conditions[J]. Tetrahedron Lett, 2009,50(28):4125-4127. doi: 10.1016/j.tetlet.2009.04.125

    17. [17]

      Wang H J, Lu J, Zhang Z H. Highly Efficient Three-Component, One-Pot Synthesis of Dihydropyrano[3, 2-c]chromene Derivatives[J]. Monatsh Chem, 2010,141(10):1107-1112. doi: 10.1007/s00706-010-0383-4

    18. [18]

      Khurana J M, Nand B, Saluja P. DBU:A Highly Efficient Catalyst for One-Pot Synthesis of Substituted 3, 4-Dihydropyrano[3, 2-c]chromenes, Dihydropyrano[4, 3-b]pyranes, 2-Amino-4H-Benzo[h]chromenes and 2-Amino-4H-Benzo[g]chromenes in Aqueous Medium[J]. Tetrahedron, 2010,66(30):5637-5641. doi: 10.1016/j.tet.2010.05.082

    19. [19]

      Banerjee S. The Remarkable Catalytic Activity of Ultra-Small Free-CeO2 Nanoparticles in Selective Carbon-Carbon Bond Formation Reactions in Water at Room Temperature[J]. New J Chem, 2015,39(7):5350-5353. doi: 10.1039/C5NJ00500K

    20. [20]

      Venkatesan K, Pujari S S, Srinivasan K V. Proline-Catalyzed Simple and Efficient Synthesis of 1, 8-Dioxo-decahydroacridines in Aqueous Ethanol Medium[J]. Synth Commun, 2009,39(2):228-241.  

    21. [21]

      Sadeh F N, Maghsoodlou M T, Hazeri N. A Facile and Efficient Synthesis of Tetrahydrobenzo[b]pyrans Using Lactose as a Green Catalyst[J]. Res Chem Intermed, 2015,41(8):5907-5914. doi: 10.1007/s11164-014-1710-x

    22. [22]

      Seifi M, Sheibani H. High Surface Area Mgo as a Highly Effective Heterogeneous Base Catalyst for Three-Component Synthesis of Tetrahydrobenzopyran and 3, 4-DihydRopyrano[c]chromene Derivatives in Aqueous Media[J]. Catal Lett, 2008,126(3):275-279.  

    23. [23]

      Albadi J, Mansournezhad A. Aqua-Mediated Multicomponent Synthesis of Various 4H-Pyran Derivatives Catalyzed by Poly-(4-Vinylpyridine)-Supported Copper Iodide Nanoparticle Catalyst[J]. Res Chem Intermed, 2016,42(6):5739-5752. doi: 10.1007/s11164-015-2400-z

    24. [24]

      Amirheidari B, Seifi M, Abaszadeh M. Evaluation of Magnetically Recyclable Nano-Fe3O4 as a Green Catalyst for the Synthesis of Mono- and Bis-tetrahydro-4H-chromene and Mono and Bis 1, 4-Dihydropyridine Derivatives[J]. Res Chem Intermed, 2016,42(4):3413-3423. doi: 10.1007/s11164-015-2220-1

    25. [25]

      Ahad A, Farooqui M. Organocatalyzed Domino Reactions:Diversity Oriented Synthesis of Pyran-Annulated Scaffolds Using in Situ-developed Benzylidenemalononitries[J]. Res Chem Intermed, 2017,43(4):2445-2455. doi: 10.1007/s11164-016-2772-8

    26. [26]

      Kangani M, Hazeri N, Maghsoodlou M T. A Mild and Environmentally Benign Synthesis of Tetrahydrobenzo[b]pyrans and Pyrano[c]chromenes Using Pectin as a Green and Biodegrandable Catalyst[J]. J Chinese Chem Soc, 2016,63(11):896-901. doi: 10.1002/jccs.2016.63.issue-11

    27. [27]

      Chen L, Bao S, Yang L. Cheap Thiamine Hydrochloride as Efficient Catalyst for Synthesis of 4H-Benzo[b]pyrans in Aqueous Ethanol[J]. Res Chem Intermed, 2017,43(7):3883-3891. doi: 10.1007/s11164-016-2843-x

    28. [28]

      SHI Daqing, WANG Jing, ZHUANG Qiya. Three-Component One-Pot Synthesis of 1, 6-Dioxa-5-oxo-1, 4, 5, 6-tetrahydrophenanthrene Derivatives in Aqueous Media[J]. J Chinese Chem Soc, 2006,26(5):643-647.  

    29. [29]

      Niknam K, Piran A. Silica-Grafted Ionic Liquids as Recyclable Catalysts for the Synthesis of 3, 4-Dihydropyrano[c]chromenes and Pyrano[2, 3-c]pyrazoles[J]. Green Sustainable Chem, 2013,3(2):1-8. doi: 10.4236/gsc.2013.32A001

    30. [30]

      Pore D M, Undale K A, Dongare B B. Potassium Phosphate Catalyzed a Rapid Three-component Synthesis of Tetrahydrobenzo[b]pyran at Ambient Temperature[J]. Catal Lett, 2009,132(1):104-108.  

    31. [31]

      Hasaninejad A, Shekouhy M, Golzar N. Silica Bonded N-Propyl-4-Aza-1-Azoniabicyclo[2.2.2]octane Chloride(SB-DABCO):A Highly Efficient, Reusable and New Heterogeneous Catalyst for the Synthesis of 4H-Benzo[b]pyran Derivatives[J]. Appl Catal A-Gen, 2011,402(1):11-22.  

    32. [32]

      Ren Y, Zhang W, Lu J. One-Pot Synthesis of Tetrahydro-4H-Chromenes by Supramolecular Catalysis in Water[J]. RSC Adv, 2015,5(97):79405-79412. doi: 10.1039/C5RA14385C

    33. [33]

      Rajput J K, Arora P, Kaur G. CuFe2O4 Magnetic Heterogeneous Nanocatalyst:Low Power Sonochemical-Coprecipitation Preparation and Applications in Synthesis of 4H-Chromene-3-Carbonitrile Scaffolds[J]. Ultrason Sonochem, 2015,26:229-240. doi: 10.1016/j.ultsonch.2015.01.008

    34. [34]

      Shirini F, Goli-Jolodar O, Akbari M. Preparation, Characterization, and Use of Poly(Vinylpyrrolidonium) Hydrogen Phosphate([PVP-H]H2PO4) as a New Heterogeneous Catalyst for Efficient Synthesis of 2-Amino-Tetrahydro-4H-Pyrans[J]. Res Chem Intermed, 2016,42(5):4733-4749. doi: 10.1007/s11164-015-2312-y

    35. [35]

      Gu Y. Multicomponent Reactions in Unconventional Solvents:State of the Art[J]. Green Chem, 2012,14(8):2091-2128.  

    36. [36]

      Bodaghifard M A, Solimannejad M, Asadbegi S. Mild and Green Synthesis of Tetrahydrobenzopyran, Pyranopyrimidinone and Polyhydroquinoline Derivatives and DFT Study on Product Structures[J]. Res Chem Intermed, 2016,42(2):1165-1179. doi: 10.1007/s11164-015-2079-1

    37. [37]

      Dömling A, Wang W, Wang K. Chemistry and Biology of Multicomponent Reactions[J]. Chem Rev, 2012,112(6):3083-3135. doi: 10.1021/cr100233r

    38. [38]

      XIONG Xinquan, HAN Qian, SHI Lin. Application of Deep-Eutectic Solvents in Green Organic Synthesis[J]. Chinese J Org Chem, 2015,36(3):480-489.  

    39. [39]

      WEI Li, CHEN Xuwen, LIU Yunyun. Recent Advances in Organic Synthesis Employing Ethyl Lactate as Green Reaction Medium[J]. Chinese J Org Chem, 2016,36(5):954-961.  

    40. [40]

      Zhang Q, Vigier K D O, Royer S. Deep Eutectic Solvents:Syntheses, Properties and Applications[J]. Chem Soc Rev, 2012,41(21):7108-7146. doi: 10.1039/c2cs35178a

    41. [41]

      Solhy A, Elmakssoudi A, Tahir R. Clean Chemical Synthesis of 2-Amino-Chromenes in Water Catalyzed by Nanostructured Diphosphate Na2CaP2O7[J]. Green Chem, 2010,12(12):2261-2267. doi: 10.1039/c0gc00387e

    42. [42]

      Dekamin M G, Eslami M. Highly Efficient Organocatalytic Synthesis of Diverse and Densely Functionalized 2-Amino-3-Cyano-4H-Pyrans under Mechanochemical Ball Milling[J]. Green Chem, 2014,16(12):4914-4921. doi: 10.1039/C4GC00411F

    43. [43]

      Liu J, Lei M, Hu L. A Catalyst-free Reaction in Water:Synthesis of Benzo[4, 5]imidazo[1, 2-a]pyrimido[4, 5-d]pyrimidin-4(1H)-One Derivatives[J]. Green Chem, 2012,14(9):2534-2539. doi: 10.1039/c2gc35745c

    44. [44]

      Yang H, Hu W, Deng S. Catalyst-Free Amidation of Aldehyde with Amine under Mild Conditions[J]. New J Chem, 2015,39(8):5912-5915. doi: 10.1039/C5NJ01372K

    45. [45]

      Alonso D A, Baeza A, Chinchilla R. Deep Eutectic Solvents:The Organic Reaction Medium of the Century[J]. Eur J Org Chem, 2016,2016(4):612-632. doi: 10.1002/ejoc.201501197

    46. [46]

      Gawande M B, Bonif Cio V D B, Luque R. Benign by Design:Catalyst-Free In-Water, On-Water Green Chemical Methodologies in Organic Synthesis[J]. Chem Soc Rev, 2013,42(12):5522-5551. doi: 10.1039/c3cs60025d

    47. [47]

      Safaei H R, Shekouhy M, Rahmanpur S. Glycerol as a Biodegradable and Reusable Promoting Medium for the Catalyst-Free One-Pot Three Component Synthesis of 4H-Pyrans[J]. Green Chem, 2012,14(6):1696-1704. doi: 10.1039/c2gc35135h

    48. [48]

      WANG Xicun, ZHANG Zhang, QUAN Zhengjun. Synthesis of N-Aryl-N'-(2-Benzofuroyl)thioureas and 1-Aroyl-4-(2'-Benzofuroyl)thiosemicarbazides in Aqueous Media[J]. Chinese J Org Chem, 2006,26(7):967-970.  

    49. [49]

      Xiao J, Wen H, Wang L. Catalyst-Free Dehydrative SN1-type Reaction of Indolyl Alcohols with Diverse Nucleophiles "On Water"[J]. Green Chem, 2016,18(4):1032-1037. doi: 10.1039/C5GC01838B

    50. [50]

      Bigi F, Carloni S, Ferrari L. Clean Synthesis in Water.Part 2:Uncatalysed Condensation Reaction of Meldrum's Acid and Aldehydes[J]. Tetrahedron Lett, 2001,42(31):5203-5205. doi: 10.1016/S0040-4039(01)00978-9

    51. [51]

      Maggi R, Bigi F, Carloni S. Uncatalysed Reactions in Water:Part 2.Preparation of 3-Carboxycoumarins[J]. Green Chem, 2001,3(4):173-174. doi: 10.1039/b101822c

    52. [52]

      Jin T S, Wang A Q, Wang X. A Clean One-Pot Synthesis of Tetrahydrobenzo[b]pyran Derivatives Catalyzed by Hexadecyltrimethyl Ammonium Bromide in Aqueous Media[J]. Synlett, 2004,2004(5):0871-0873.  

    53. [53]

      Patil D, Chandam D, Mulik A. Novel Brønsted Acidic Ionic Liquid ([CMIM] [CF3COO]) Prompted Multicomponent Hantzsch Reaction for the Eco-Friendly Synthesis of Acridinediones:An Efficient and Recyclable Catalyst[J]. Catal Lett, 2014,144(5):949-958. doi: 10.1007/s10562-014-1202-z

    54. [54]

      Brahmachari G, Banerjee B. Facile and One-Pot Access to Diverse and Densely Functionalized 2-Amino-3-Cyano-4H-Pyrans and Pyran-Annulated Heterocyclic Scaffolds via an Eco-Friendly Multicomponent Reaction at Room Temperature Using Urea as a Novel Organo-Catalyst[J]. ACS Sustainable Chem Eng, 2014,2(3):411-422. doi: 10.1021/sc400312n

    55. [55]

      Chandam D R, Mulik A G, Patil P P. (±)-Camphor-10-Sulfonic Acid Catalyzed Atom Efficient and Green Synthesis of Triazolo[1, 2-a]indazole-Triones and Spiro Triazolo[1, 2-a]indazole-Tetraones[J]. Res Chem Intermed, 2015,41(2):761-771. doi: 10.1007/s11164-013-1226-9

    56. [56]

      Shabalala N, Maddila S, Jonnalagadda S B. Catalyst-Free, One-Pot, Four-Component Green Synthesis of Functionalized 1-(2-Fluorophenyl)-1, 4-Dihydropyridines under Ultrasound Irradiation[J]. New J Chem, 2016,40(6):5107-5112. doi: 10.1039/C5NJ03574K

    57. [57]

      Adib M, Yasaei Z, Mirzaei P. A One-pot, Multicomponent Synthesis of 5'-Amino-2, 2'-dioxospiro[indoline-3, 3'-pyrrole]-4'-carbonitriles[J]. Synlett, 2016,27(3):383-386.  

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    3. [3]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    4. [4]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    8. [8]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(1)
  • Abstract views(315)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return