Citation: SU Ce, CHANG Kaishan, LI Siliang, LI Guanbin, ZHANG Hongbo, BAI Lingling. Synthesis and Properties of a Zn2+ Fluorescent Probe Based on Coumarins[J]. Chinese Journal of Applied Chemistry, ;2018, 35(5): 532-537. doi: 10.11944/j.issn.1000-0518.2018.05.170197 shu

Synthesis and Properties of a Zn2+ Fluorescent Probe Based on Coumarins

  • Corresponding author: SU Ce, cesu1008@lut.cn
  • Received Date: 5 June 2017
    Revised Date: 17 October 2017
    Accepted Date: 9 November 2017

    Fund Project: Supported by the National Natural Science Foundation Project(No.21462025)the National Natural Science Foundation Project 21462025

Figures(7)

  • A coumarin type fluorescent probe was synthesized from 1H-indole-3-carbohydrazide hydrazide and 8-formyl 7-hydroxy-4-methylcoumarin, which was obtained by Pechmann condensation of resorcinol and ethyl acetoacetate followed by formylation employing hexamethylenetetramine. The structure and fluorescence properties of this probe were characterized by nuclear magnetic resonance spectroscopy(NMR), mass spectrometry(MS), fluorescence emission spectrometer and UV-visible absorption spectrum. The probe coordinated with Zn2+ in 1:1 ratio and led to high selectivity for the detection of Zn2+ with a detection limit at 3.6×10-8 mol/L. These demonstrate potential application of the probe for the detection of Zn2+ in biological studies.
  • 加载中
    1. [1]

      Domaille D W, Que E L, Chang C J. Synthetic Fluorescent Sensors for Studying the Cell Biology of Metals[J]. Nat Chem Biol, 2008,4(3):168-175. doi: 10.1038/nchembio.69

    2. [2]

      Vallee B L, Falchuk K H. The Biochemical Basis of Zn2+ Physiology[J]. Physiol Rev, 1993,73(1):79-118. doi: 10.1152/physrev.1993.73.1.79

    3. [3]

      Xu Z, Yoon J, Spring D R. Fluorescent Chemosensors for Zn2+[J]. Chem Soc Rev, 2010,39(6):1996-2006. doi: 10.1039/b916287a

    4. [4]

      Frederickson C J, Koh J Y, Bush A I. The Neurobiology of Zinc in Health and Disease[J]. Nat Rev Neurosci, 2005,6(6)449. doi: 10.1038/nrn1671

    5. [5]

      Watt N T, Whitehouse I J, Hooper N M. The Role of Zinc in Alzheimer's Disease[J]. Int J Alzheimers Dis, 2010,2011(2)971021.  

    6. [6]

      Jayawardena R, Ranasinghe P, Galappatthy P. Effects of Zinc Supplementation on Diabetes Mellitus:A Systematic Review and Meta-Analysis[J]. Diabetol Metab Syndr, 2012,4(1):1-12. doi: 10.1186/1758-5996-4-1

    7. [7]

      Ho E, Song Y. Zinc and Prostatic Cancer[J]. Curr Opin Clin Nutr, 2009,12(6):640-645.  

    8. [8]

      Yuan L, Lin W, Zheng K. Far-red to Near Infrared Analyte-Responsive Fluorescent Probes Based on Organic Fluorophore Platforms for Fluorescence Imaging[J]. Chem Soc Rev, 2013,44(20):622-661.  

    9. [9]

      XIAO Qi, HUANG Shan, LU Shuangyan. A Method for Detecting the Concentration of Zinc Ions: CN, 104569120. A[P], 2015(in Chinese).

    10. [10]

      ZHANG Huashan, WANG Hong, ZHAO Yuanyuan. Molecular Probe and Detection Reagent[M]. Beijing:Science Press, 2002, 326-330(in Chinese).

    11. [11]

      Bosch P, Catalina F, Corrales T. Fluorescent Probes for Sensing Processes in Polymers[J]. Chem A Eur J, 2005,11(15):4314-4325. doi: 10.1002/chem.v11:15

    12. [12]

      Kikuchi K, Komatsu K, Nagano T. Zinc Sensing for Cellular Application[J]. Curr Opin Chem Biol, 2004,8(2):182-191. doi: 10.1016/j.cbpa.2004.02.007

    13. [13]

      Xu Z C, Yoon J, Spring D R. Fluorescent Chemosensors for Zn2+[J]. Chem Soc Rev, 2010,39(6):1996-2006. doi: 10.1039/b916287a

    14. [14]

      Verma P, Pal H. Unusual H-Type Aggregation of Coumarin-481 Dye in Polar Organic Solvents[J]. J Phys Chem A, 2013,117(47):12409-12418. doi: 10.1021/jp409405a

    15. [15]

      Hettie K S, Glass T E. Coumarin-3-Aldehyde as a Scaffold for the Design of Tunable PET-Modulated Fluorescent Sensors for Neurotransmitters[J]. Chem A Eur J, 2014,20(52):17488-17499.  

    16. [16]

      Lou X, Zhao Z, Hong Y. A New Turn-On Chemosensor for Bio-Thiols Based on the Nanoaggregates of a Tetraphenylethene Coumarin Fluorophore[J]. Nanoscale, 2014,6(24):14691-14696. doi: 10.1039/C4NR04593A

    17. [17]

      Liu M, Jiang Q, Lu Z. A Coumarin-Based Fluorescent Turn-On Probe for Detection of Biothiols in Vitro[J]. Luminescene, 2015,30(8):1395-1402. doi: 10.1002/bio.2912

    18. [18]

      Pechman H, Duisberg C. Compounds Derived from Phenols and Acetoacetic Ester[J]. Ber Dtsch Chem Ges, 1883,16:2119-2128. doi: 10.1002/(ISSN)1099-0682

    19. [19]

      Ajaykumar K, Patil S A, Badami P S. Synthesis, Characterization, DNA Cleavage and in Vitro Antimicrobial Studies of La(Ⅲ), Th(Ⅳ) and VO(Ⅳ) Complexes with Schiff Bases of Coumarin Derivatives[J]. Eur J Med Chem, 2009,44(7):2904-2912. doi: 10.1016/j.ejmech.2008.12.012

    20. [20]

      Saha U C, Chattopadhyay B, Dhara K. A Highly Selective Fluorescent Chemosensor for Zinc Ion and Imaging Application in Living Cells[J]. Inorg Chem, 2011,50(4):1213-1219. doi: 10.1021/ic1015252

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    5. [5]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    6. [6]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    7. [7]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    8. [8]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    18. [18]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

Metrics
  • PDF Downloads(5)
  • Abstract views(1957)
  • HTML views(1199)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return