Microfluidic Synthesis of High-activity PtRu/C Catalyst for Methanol Electro-oxidation
- Corresponding author: SUN Mojie, smoj@sina.com XU Weilin, weilinxu@ciac.ac.cn
Citation:
SUN Mojie, LÜ Tao, XU Weilin. Microfluidic Synthesis of High-activity PtRu/C Catalyst for Methanol Electro-oxidation[J]. Chinese Journal of Applied Chemistry,
;2018, 35(5): 564-573.
doi:
10.11944/j.issn.1000-0518.2018.05.170150
Zhou C, Wang H, Peng F. MnO2/CNT Supported Pt and PtRu Nanocatalysts for Direct Methanol Fuel Cells[J]. Langmuir, 2009,25(13):7711-7717. doi: 10.1021/la900250w
Liu S H, Yu W Y, Chen C H. Fabrication and Characterization of Well-dispersed and Highly Stable PtRu Nanoparticles on Carbon Mesoporous Material for Applications in Direct Methanol Fuel Cell[J]. Chem Mater, 2008,20(4):1622-1628. doi: 10.1021/cm702777j
Xu W, Lu T, Liu C. Nanostructured PtRu/C as Anode Catalysts Prepared in a Pseudomicroemulsion with Ionic Surfactant for Direct Methanol Fuel Cell[J]. J Phys Chem B, 2005,109(30):14325-14330. doi: 10.1021/jp051443y
Stoupin S, Chung E H, Chattopadhyay S. Pt and Ru X-ray Absorption Spectroscopy of PtRu Anode Catalysts in Operating Direct Methanol Fuel Cells[J]. J Phys Chem B, 2006,110(20):9932-9938. doi: 10.1021/jp057047x
Bockris J O'M, Wroblowa H. Electrocatalysis[J]. J Electroanal Chem, 1964,7(6):428-451.
Aricò A S, Srinivasan S, Antonucci V. DMFCs:From Fundamental Aspects to Technology Development[J]. Fuel Cells, 2001,1(2):133-161. doi: 10.1002/(ISSN)1615-6854
Chen D J, Tong Y Y J. Irrelevance of Carbon Monoxide Poisoning in the Methanol Oxidation Reaction on a PtRu Electrocatalyst[J]. Angew Chem, 2015,127(32):9526-9530. doi: 10.1002/ange.201503917
Wang H, Alden L R, Disalvo F J. Methanol Electrooxidation on PtRu Bulk Alloys and Carbon-supported PtRu Nanoparticle Catalysts:A Quantitative DEMS Study[J]. Langmuir, 2009,25(13):7725-7735. doi: 10.1021/la900305k
Huang H, Wang X. Recent Progress on Carbon-Based Support Materials for Electrocatalysts of Direct Methanol Fuel Cells[J]. J Mater Chem, 2014,2(18):6266-6291. doi: 10.1039/C3TA14754A
Vidaković T, Christov M, Sundmacher K. PtRu Colloidal Catalysts:Characterisation and Determination of Kinetics for Methanol Oxidation[J]. Electrochim Acta, 2007,52(6):2277-2284. doi: 10.1016/j.electacta.2006.03.110
Min K J, Won J Y, Lee K R. Highly Active PtRuFe/C Catalyst for Methanol Electro-oxidation[J]. Electrochem Commun, 2007,9(9):2163-2166. doi: 10.1016/j.elecom.2007.06.014
Zhang X, Chan K Y. Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties[J]. Chem Mater, 2003,15(2):451-459. doi: 10.1021/cm0203868
Teng X, Maksimuk S, Frommer S. Three-Dimensional PtRu Nanostructures[J]. Chem Mater, 2007,19(1):36-41. doi: 10.1021/cm061979b
Tsuji M, Kubokawa M, Yano R. Fast Preparation of PtRu Catalysts Supported on Carbon Nanofibers by the Microwave-Polyol Method and Their Application to Fuel Cells[J]. Langmuir, 2007,23(1):387-390.
Chun H T, Juhui S, Feipeng C. Bimetallic PtRu Nanoparticles Supported on Functionalized Multiwall Carbon Nanotubes as High Performance Electrocatalyst for Direct Methanol Fuel Cells[J]. Nano, 2016,11(2):105-109.
Basnayake R, Li Z, Katar S. PtRu Nanoparticle Electrocatalyst with Bulk Alloy Properties Prepared Through a Sonochemical Method[J]. Langmuir, 2006,22(25):10446-10450. doi: 10.1021/la061274o
Tong Y Y, Kim H S, Babu P K. An NMR Investigation of CO Tolerance in a Pt/Ru Fuel Cell Catalyst[J]. J Am Chem Soc, 2002,124(3):468-473. doi: 10.1021/ja011729q
Karnik R, Gu F, Basto P. Microfluidic Platform for Controlled Synthesis of Polymeric Nanoparticles[J]. Nano Lett, 2008,8(9):2906-2912. doi: 10.1021/nl801736q
Zhao C X, He L, Qiao S Z. Nanoparticle Synthesis in Microreactors[J]. Chem Eng Sci, 2011,66(7):1463-1479. doi: 10.1016/j.ces.2010.08.039
Wang G, Shi G, Wang H. In Situ Functionalization of Stable 3D Nest-like Networks in Confined Channels for Microfluidic Enrichment and Detection[J]. Adv Funct Mater, 2014,24(7):1017-1026. doi: 10.1002/adfm.v24.7
Nightingale A M, Demello J C. Segmented Flow Reactors for Nanocrystal Synthesis[J]. Adv Mater, 2013,25(13):1813-1821. doi: 10.1002/adma.v25.13
Krishna K S, Li Y, Li S. Lab-on-a-Chip Synthesis of Inorganic Nanomaterials and Quantum Dots for Biomedical Applications[J]. Adv Drug Delivery Rev, 2013,65(11/12):1470-1495.
Song Y, Hormes J, Kumar C S. Microfluidic Synthesis of Nanomaterials[J]. Small, 2008,4(6):698-711. doi: 10.1002/smll.200701029
Wootton R C, Demello A J. Microfluidics:Analog-to-Digital Drug Screening[J]. Nature, 2012,483(7387):43-44. doi: 10.1038/483043a
Hler J M, Romanus H, Bner U. Formation of Star-like and Core-shell AuAg Nanoparticles During Two- and Three-Step Preparation in Batch and in Microfluidic Systems[J]. J Nanomater, 2007(1):1-7.
Gómez-de Pedro S, Martínez-Cisneros C S, Puyol M. Microreactor with Integrated Temperature Control for the Synthesis of CdSe Nanocrystals[J]. Lab Chip, 2012,12(11):1979-1986. doi: 10.1039/c2lc00011c
Wang H, Nakamura H, Uehara M. Highly Luminescent CdSe/ZnS Nanocrystals Synthesized Using a Single-Molecular ZnS Source in a Microfluidic Reactor[J]. Adv Funct Mater, 2005,15(4):603-608. doi: 10.1002/(ISSN)1616-3028
Ran G, Fu Q, Xu W. Microfluidic-based Controllable Synthesis of Pt Nanocatalysts Supported on Carbon for Fuel Cells[J]. RSC Adv, 2015,5(19):14740-14746. doi: 10.1039/C4RA12145G
Christina B, Chantal P, Martin C. Size-selected Synthesis of PtRu Nano-catalysts:Reaction and Size Control Mechanism[J]. J Am Chem Soc, 2004,126(25):8028-8037. doi: 10.1021/ja0495819
Xu C, Wang L, Mu X. Nanoporous PtRu Alloys for Electrocatalysis[J]. Langmuir, 2010,26(10):7437-7443. doi: 10.1021/la9041474
Park G G, Yang T H, Yoon Y G. Pore Size Effect of the DMFC Catalyst Supported on Porous Materials[J]. Int J Hydrogen Energy, 2003,28(6):645-650. doi: 10.1016/S0360-3199(02)00140-4
Kim P, Ji B J, Kim W. Graphitic Spherical Carbon as a Support for a PtRu-alloy Catalyst in the Methanol Electro-oxidation[J]. Catal Lett, 2006,112(3):213-218.
Tripković A V, Popović K D, Grgur B N. Methanol Electrooxidation on Supported Pt and PtRu Catalysts in Acid and Alkaline Solutions[J]. Electrochim Acta, 2002,47(22):3707-3714.
Bernechea M, Garcíarodríguez S, Terreros P. Synthesis of Core-Shell PtRu Dendrimer-encapsulated Nanoparticles. Relevance as Electrocatalysts for CO Oxidation[J]. J Phys Chem C, 2012,115(4):1287-1294.
Mancharan R, Goodenough J B. Methanol Oxidation in Acids on Ordered NiTi[J]. J Mater Chem, 1992,2(8):875-887. doi: 10.1039/jm9920200875
Hofsteadduffy A M, Chen D J, Sun S G. Origin of the Current Peak of Negative Scan in the Cyclic Voltammetry of Methanol Electro-oxidation on Pt-based Electrocatalysts:A Revisit to the Current Ratio Criterion[J]. J Mater Chem, 2012,22(11):5205-5208. doi: 10.1039/c2jm15426a
Zhao Y, Li X, Schechter J M. Revisiting the Oxidation Peak in the Cathodic Scan of the Cyclic Voltammogram of Alcohol Oxidation on Noble Metal Electrodes[J]. RSC Adv, 2016,6(7):5384-5390. doi: 10.1039/C5RA24249E
Chung D Y, Lee K J, Sung Y E. Methanol Electro-oxidation on the Pt Surface:Revisiting the Cyclic Voltammetry Interpretation[J]. J Phys Chem C, 2016,120(17):9028-9035. doi: 10.1021/acs.jpcc.5b12303
Chattopadhyay J, Pathak T S, Pak D. Metal Hollow Sphere Electrocatalysts[J]. Korean J Chem Eng, 2016,33(5):1514-1529. doi: 10.1007/s11814-016-0056-z
Takasu Y, Kawaguchi T, Sugimoto W. Effects of the Surface Area of Carbon Support on the Characteristics of Highly-dispersed PtRu Particles as Catalysts for Methanol Oxidation[J]. Electrochim Acta, 2003,48(25):3861-3868.
Yang C, Zhou M, Gao L. Highly Alloyed PtRu Nanoparticles Confined in Porous Carbon Structure as a Durable Electrocatalyst for Methanol Oxidation[J]. ACS Appl Mater, 2014,6(21):18938-18950. doi: 10.1021/am504821h
Lu S, Eid K, Ge D. One-pot Synthesis of PtRu Nanodendrites as Efficient Catalysts for Methanol Oxidation Reaction[J]. Nanoscale, 2016,3(1):35-42.
Jun LI , Huipeng LI , Hua ZHAO , Qinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Jun Lu , Jinrui Yan , Yaohao Guo , Junjie Qiu , Shuangliang Zhao , Bo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876
Gaowa Xing , Yuting Shang , Xiaorui Wang , Zengnan Wu , Qiang Zhang , Jiebing Ai , Qiaosheng Pu , Ling Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491
Cheng Wang , Ji Wang , Dong Liu , Zhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302
Feng Wu , Xuemin Kong , Yixuan Liu , Shuli Wang , Zhong Chen , Xu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532
Qijun Tang , Wenguang Tu , Yong Zhou , Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170
Zimo Peng , Quan Zhang , Gaocan Qi , Hao Zhang , Qian Liu , Guangzhi Hu , Jun Luo , Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191
Yizhe Chen , Yuzhou Jiao , Liangyu Sun , Cheng Yuan , Qian Shen , Peng Li , Shiming Zhang , Jiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789
Shuang Li , Jiayu Sun , Guocheng Liu , Shuo Zhang , Zhong Zhang , Xiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148