Citation: SUN Mojie, LÜ Tao, XU Weilin. Microfluidic Synthesis of High-activity PtRu/C Catalyst for Methanol Electro-oxidation[J]. Chinese Journal of Applied Chemistry, ;2018, 35(5): 564-573. doi: 10.11944/j.issn.1000-0518.2018.05.170150 shu

Microfluidic Synthesis of High-activity PtRu/C Catalyst for Methanol Electro-oxidation

  • Corresponding author: SUN Mojie, smoj@sina.com XU Weilin, weilinxu@ciac.ac.cn
  • Received Date: 11 May 2017
    Revised Date: 31 May 2017
    Accepted Date: 1 June 2017

    Fund Project: the National Natural Science Foundation of China 21503212the National Natural Science Foundation of China 21303180the National Basic Research Program of China 973计划the National Basic Research Program of China 2014CB932700Supported by the National Basic Research Program of China(973 Program, No.2014CB932700), the National Natural Science Foundation of China(No.21422307, No.21303180, No.21433003, No.21573215, No.21503212, No.21503211)the National Natural Science Foundation of China 21422307the National Natural Science Foundation of China 21433003the National Natural Science Foundation of China 21573215the National Natural Science Foundation of China 21503211

Figures(6)

  • In this work, a microfluidic approach was reported for the synthesis of carbon-supported PtRu nanoparticles(PtRu/C) for high efficient methanol electro-oxidation. By varying the flow rate of reactants in the simple custom-made microfluidic reactor, a series of PtRu/C catalysts was obtained with size ranging from 1.4 to 2.0 nm. Electrochemical measurements show that the superior activity of catalyst obtained with flow rate of 90 μL/min for methanol electro-oxidation could be attributed to its large electrochemically active surface area(ECSA) and the high content of metallic Pt(0). This method for the preparation of catalyst holds great promise for potential applications in important energy conversion and environmental fields.
  • 加载中
    1. [1]

      Zhou C, Wang H, Peng F. MnO2/CNT Supported Pt and PtRu Nanocatalysts for Direct Methanol Fuel Cells[J]. Langmuir, 2009,25(13):7711-7717. doi: 10.1021/la900250w

    2. [2]

      Liu S H, Yu W Y, Chen C H. Fabrication and Characterization of Well-dispersed and Highly Stable PtRu Nanoparticles on Carbon Mesoporous Material for Applications in Direct Methanol Fuel Cell[J]. Chem Mater, 2008,20(4):1622-1628. doi: 10.1021/cm702777j

    3. [3]

      Xu W, Lu T, Liu C. Nanostructured PtRu/C as Anode Catalysts Prepared in a Pseudomicroemulsion with Ionic Surfactant for Direct Methanol Fuel Cell[J]. J Phys Chem B, 2005,109(30):14325-14330. doi: 10.1021/jp051443y

    4. [4]

      Stoupin S, Chung E H, Chattopadhyay S. Pt and Ru X-ray Absorption Spectroscopy of PtRu Anode Catalysts in Operating Direct Methanol Fuel Cells[J]. J Phys Chem B, 2006,110(20):9932-9938. doi: 10.1021/jp057047x

    5. [5]

      Bockris J O'M, Wroblowa H. Electrocatalysis[J]. J Electroanal Chem, 1964,7(6):428-451.  

    6. [6]

      Aricò A S, Srinivasan S, Antonucci V. DMFCs:From Fundamental Aspects to Technology Development[J]. Fuel Cells, 2001,1(2):133-161. doi: 10.1002/(ISSN)1615-6854

    7. [7]

      Chen D J, Tong Y Y J. Irrelevance of Carbon Monoxide Poisoning in the Methanol Oxidation Reaction on a PtRu Electrocatalyst[J]. Angew Chem, 2015,127(32):9526-9530. doi: 10.1002/ange.201503917

    8. [8]

      Wang H, Alden L R, Disalvo F J. Methanol Electrooxidation on PtRu Bulk Alloys and Carbon-supported PtRu Nanoparticle Catalysts:A Quantitative DEMS Study[J]. Langmuir, 2009,25(13):7725-7735. doi: 10.1021/la900305k

    9. [9]

      Huang H, Wang X. Recent Progress on Carbon-Based Support Materials for Electrocatalysts of Direct Methanol Fuel Cells[J]. J Mater Chem, 2014,2(18):6266-6291. doi: 10.1039/C3TA14754A

    10. [10]

      Vidaković T, Christov M, Sundmacher K. PtRu Colloidal Catalysts:Characterisation and Determination of Kinetics for Methanol Oxidation[J]. Electrochim Acta, 2007,52(6):2277-2284. doi: 10.1016/j.electacta.2006.03.110

    11. [11]

      Min K J, Won J Y, Lee K R. Highly Active PtRuFe/C Catalyst for Methanol Electro-oxidation[J]. Electrochem Commun, 2007,9(9):2163-2166. doi: 10.1016/j.elecom.2007.06.014

    12. [12]

      Zhang X, Chan K Y. Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties[J]. Chem Mater, 2003,15(2):451-459. doi: 10.1021/cm0203868

    13. [13]

      Teng X, Maksimuk S, Frommer S. Three-Dimensional PtRu Nanostructures[J]. Chem Mater, 2007,19(1):36-41. doi: 10.1021/cm061979b

    14. [14]

      Tsuji M, Kubokawa M, Yano R. Fast Preparation of PtRu Catalysts Supported on Carbon Nanofibers by the Microwave-Polyol Method and Their Application to Fuel Cells[J]. Langmuir, 2007,23(1):387-390.  

    15. [15]

      Chun H T, Juhui S, Feipeng C. Bimetallic PtRu Nanoparticles Supported on Functionalized Multiwall Carbon Nanotubes as High Performance Electrocatalyst for Direct Methanol Fuel Cells[J]. Nano, 2016,11(2):105-109.  

    16. [16]

      Basnayake R, Li Z, Katar S. PtRu Nanoparticle Electrocatalyst with Bulk Alloy Properties Prepared Through a Sonochemical Method[J]. Langmuir, 2006,22(25):10446-10450. doi: 10.1021/la061274o

    17. [17]

      Tong Y Y, Kim H S, Babu P K. An NMR Investigation of CO Tolerance in a Pt/Ru Fuel Cell Catalyst[J]. J Am Chem Soc, 2002,124(3):468-473. doi: 10.1021/ja011729q

    18. [18]

      Karnik R, Gu F, Basto P. Microfluidic Platform for Controlled Synthesis of Polymeric Nanoparticles[J]. Nano Lett, 2008,8(9):2906-2912. doi: 10.1021/nl801736q

    19. [19]

      Zhao C X, He L, Qiao S Z. Nanoparticle Synthesis in Microreactors[J]. Chem Eng Sci, 2011,66(7):1463-1479. doi: 10.1016/j.ces.2010.08.039

    20. [20]

      Wang G, Shi G, Wang H. In Situ Functionalization of Stable 3D Nest-like Networks in Confined Channels for Microfluidic Enrichment and Detection[J]. Adv Funct Mater, 2014,24(7):1017-1026. doi: 10.1002/adfm.v24.7

    21. [21]

      Nightingale A M, Demello J C. Segmented Flow Reactors for Nanocrystal Synthesis[J]. Adv Mater, 2013,25(13):1813-1821. doi: 10.1002/adma.v25.13

    22. [22]

      Krishna K S, Li Y, Li S. Lab-on-a-Chip Synthesis of Inorganic Nanomaterials and Quantum Dots for Biomedical Applications[J]. Adv Drug Delivery Rev, 2013,65(11/12):1470-1495.  

    23. [23]

      Song Y, Hormes J, Kumar C S. Microfluidic Synthesis of Nanomaterials[J]. Small, 2008,4(6):698-711. doi: 10.1002/smll.200701029

    24. [24]

      Wootton R C, Demello A J. Microfluidics:Analog-to-Digital Drug Screening[J]. Nature, 2012,483(7387):43-44. doi: 10.1038/483043a

    25. [25]

      Hler J M, Romanus H, Bner U. Formation of Star-like and Core-shell AuAg Nanoparticles During Two- and Three-Step Preparation in Batch and in Microfluidic Systems[J]. J Nanomater, 2007(1):1-7.  

    26. [26]

      Gómez-de Pedro S, Martínez-Cisneros C S, Puyol M. Microreactor with Integrated Temperature Control for the Synthesis of CdSe Nanocrystals[J]. Lab Chip, 2012,12(11):1979-1986. doi: 10.1039/c2lc00011c

    27. [27]

      Wang H, Nakamura H, Uehara M. Highly Luminescent CdSe/ZnS Nanocrystals Synthesized Using a Single-Molecular ZnS Source in a Microfluidic Reactor[J]. Adv Funct Mater, 2005,15(4):603-608. doi: 10.1002/(ISSN)1616-3028

    28. [28]

      Ran G, Fu Q, Xu W. Microfluidic-based Controllable Synthesis of Pt Nanocatalysts Supported on Carbon for Fuel Cells[J]. RSC Adv, 2015,5(19):14740-14746. doi: 10.1039/C4RA12145G

    29. [29]

      Christina B, Chantal P, Martin C. Size-selected Synthesis of PtRu Nano-catalysts:Reaction and Size Control Mechanism[J]. J Am Chem Soc, 2004,126(25):8028-8037. doi: 10.1021/ja0495819

    30. [30]

      Xu C, Wang L, Mu X. Nanoporous PtRu Alloys for Electrocatalysis[J]. Langmuir, 2010,26(10):7437-7443. doi: 10.1021/la9041474

    31. [31]

      Park G G, Yang T H, Yoon Y G. Pore Size Effect of the DMFC Catalyst Supported on Porous Materials[J]. Int J Hydrogen Energy, 2003,28(6):645-650. doi: 10.1016/S0360-3199(02)00140-4

    32. [32]

      Kim P, Ji B J, Kim W. Graphitic Spherical Carbon as a Support for a PtRu-alloy Catalyst in the Methanol Electro-oxidation[J]. Catal Lett, 2006,112(3):213-218.  

    33. [33]

      Tripković A V, Popović K D, Grgur B N. Methanol Electrooxidation on Supported Pt and PtRu Catalysts in Acid and Alkaline Solutions[J]. Electrochim Acta, 2002,47(22):3707-3714.  

    34. [34]

      Bernechea M, Garcíarodríguez S, Terreros P. Synthesis of Core-Shell PtRu Dendrimer-encapsulated Nanoparticles. Relevance as Electrocatalysts for CO Oxidation[J]. J Phys Chem C, 2012,115(4):1287-1294.  

    35. [35]

      Mancharan R, Goodenough J B. Methanol Oxidation in Acids on Ordered NiTi[J]. J Mater Chem, 1992,2(8):875-887. doi: 10.1039/jm9920200875

    36. [36]

      Hofsteadduffy A M, Chen D J, Sun S G. Origin of the Current Peak of Negative Scan in the Cyclic Voltammetry of Methanol Electro-oxidation on Pt-based Electrocatalysts:A Revisit to the Current Ratio Criterion[J]. J Mater Chem, 2012,22(11):5205-5208. doi: 10.1039/c2jm15426a

    37. [37]

      Zhao Y, Li X, Schechter J M. Revisiting the Oxidation Peak in the Cathodic Scan of the Cyclic Voltammogram of Alcohol Oxidation on Noble Metal Electrodes[J]. RSC Adv, 2016,6(7):5384-5390. doi: 10.1039/C5RA24249E

    38. [38]

      Chung D Y, Lee K J, Sung Y E. Methanol Electro-oxidation on the Pt Surface:Revisiting the Cyclic Voltammetry Interpretation[J]. J Phys Chem C, 2016,120(17):9028-9035. doi: 10.1021/acs.jpcc.5b12303

    39. [39]

      Chattopadhyay J, Pathak T S, Pak D. Metal Hollow Sphere Electrocatalysts[J]. Korean J Chem Eng, 2016,33(5):1514-1529. doi: 10.1007/s11814-016-0056-z

    40. [40]

      Takasu Y, Kawaguchi T, Sugimoto W. Effects of the Surface Area of Carbon Support on the Characteristics of Highly-dispersed PtRu Particles as Catalysts for Methanol Oxidation[J]. Electrochim Acta, 2003,48(25):3861-3868.  

    41. [41]

      Yang C, Zhou M, Gao L. Highly Alloyed PtRu Nanoparticles Confined in Porous Carbon Structure as a Durable Electrocatalyst for Methanol Oxidation[J]. ACS Appl Mater, 2014,6(21):18938-18950. doi: 10.1021/am504821h

    42. [42]

      Lu S, Eid K, Ge D. One-pot Synthesis of PtRu Nanodendrites as Efficient Catalysts for Methanol Oxidation Reaction[J]. Nanoscale, 2016,3(1):35-42.  

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    6. [6]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    7. [7]

      Gaowa XingYuting ShangXiaorui WangZengnan WuQiang ZhangJiebing AiQiaosheng PuLing Lin . A microfluidic biosensor for multiplex immunoassay of foodborne pathogens agitated by programmed audio signals. Chinese Chemical Letters, 2024, 35(10): 109491-. doi: 10.1016/j.cclet.2024.109491

    8. [8]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    9. [9]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    10. [10]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    11. [11]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    12. [12]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    13. [13]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    14. [14]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    15. [15]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    16. [16]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

    17. [17]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    18. [18]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    19. [19]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    20. [20]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

Metrics
  • PDF Downloads(2)
  • Abstract views(309)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return