Citation: DENG Huiyun, WANG Bin, WU Mao, WEN Ruizhi, MA Qiang, GUO Yaping, DENG Bin, XIE Lianwu. Preparation and Selective Recognition Property of Magnetic Surface Molecularly Imprinted Polymers with Gallic Acid as Template[J]. Chinese Journal of Applied Chemistry, ;2018, 35(5): 600-608. doi: 10.11944/j.issn.1000-0518.2018.05.170138 shu

Preparation and Selective Recognition Property of Magnetic Surface Molecularly Imprinted Polymers with Gallic Acid as Template

  • Corresponding author: XIE Lianwu, xiecsu@126.com
  • Received Date: 27 April 2017
    Revised Date: 9 June 2017
    Accepted Date: 3 July 2017

    Fund Project: the Hunan Provincial Key Laboratory Special Foundation of China 2014FJ3011the Hunan Provincial Key Laboratory Special Foundation of China 2016XGJSYB01Supported by the Technology Foundation for Selected Overseas Chinese Scholar of Ministry of Human Resources and Social Security of China(No.2016-176), the Hunan Provincial Key Laboratory Special Foundation of China(No.2014FJ3011, No.2016XGJSYB01, No.2015TP4021-5), the Hu′nan Provincial Colleges and Universities "twelve-five planning" Professional Comprehensive Reform Pilot Project(No.2012-266)the Hu'nan Provincial Colleges and Universities "twelve-five planning" Professional Comprehensive Reform Pilot Project 2012-266the Hunan Provincial Key Laboratory Special Foundation of China 2015TP4021-5the Technology Foundation for Selected Overseas Chinese Scholar of Ministry of Human Resources and Social Security of China 2016-176

Figures(10)

  • Hydroxybenzoic acid compounds are used widely and have strong polarity. The separation, purification and analysis of their analogues in complex aqueous solution are very difficult. In this paper, magnetic surface molecularly imprinted polymer(MIP) was prepared using nano magnetic Fe3O4 as the carrier and gallic acid(GA) as the template molecule, and characterized by transmission electron microscopy, infrared spectroscopy and magnetic intensity measurement. Then its adsorption properties and adsorptive selectivity were studied by the static adsorption and dynamic adsorption experiments to compare the adsorption properties of GA on MIP with those of 2, 4-dihydroxybenzoic acid, salicylic acid and benzoic acid. The results show that the MIP with GA as the template has a core-shell structure with a strong bonding effect, the adsorption process belongs to Langmuir monolayer adsorption and the adsorption kinetics can satisfy the pseudo-second-order kinetic equation model. The MIP exhibits an excellent selectivity for GA, and its adsorption capacity(37.736 mg/g at 318 K) is much higher than those of other structural analogues. The MIP prepared by this method can not only recognize the template molecule, but also be magnetically controlled. The high separation efficiency is applicable to the solid phase extraction.
  • 加载中
    1. [1]

      Chan K, Chui S H, Wong D Y. Protective Effects of Danshensu from the Aqueous Extract of Salvia Miltiorrhiza(Danshen) Against Homocysteine-induced Endothelial Dysfunction[J]. Life Sci, 2004,75(26):3157-3171. doi: 10.1016/j.lfs.2004.06.010

    2. [2]

      ZHU Ying, CHEN Xuan, ZHENG Feilang. Application of Three-phase Hollow Fiber Liquid-phase Microextraction for Analysis of Hydroxybenzoic Acids[J]. Chinese J Chromatogr, 2009,27(6):769-775.  

    3. [3]

      Beer D D, Joubert E, Gelderblom W C A. Antioxidant Activity of South African Red and White Cultivar Wines:Free Radical Scavenging[J]. J Agric Food Chem, 2003,51(4):902-909. doi: 10.1021/jf026011o

    4. [4]

      Daduang J, Palasap A, Daduang S. Gallic Acid Enhancement of Gold Nanoparticle Anticancer Activity in Cervical Cancer Cells[J]. Asian Pac J Cancer Prev, 2015,16(1):169-174. doi: 10.7314/APJCP.2015.16.1.169

    5. [5]

      Paolini A, Curti V, Pasi F. Gallic Acid Exerts a Protective or an Anti-proliferative Effect on Glioma T98G Cells via Dose-dependent Epigenetic Regulation Mediated by miRNAs[J]. Int J Oncol, 2015,46(4):1491-1497. doi: 10.3892/ijo.2015.2864

    6. [6]

      Kang N, Lee J H, Lee W, et al. Gallic Acid Isolated from Spirogyra sp. Improves Cardiovascular Disease Through a Vasorelaxant and Antihypertensive Effect[J]. Environ Toxiol Pharmacol, 2015, 39(2): 764-772.

    7. [7]

      Gil-Longo J, Gonzlez-Vzquez C. Vascular Pro-oxidant Effects Secondary to the Autoxidation of Gallic Acid in Rat Aorta[J]. J Nutr Biochem, 2010,21(4):304-309. doi: 10.1016/j.jnutbio.2009.01.003

    8. [8]

      ZHAO La. Research Advance on Preparation of Gallic Acid from Chinese Nutgall[J]. Chem Bioeng, 2008,25(5):5-7.  

    9. [9]

      CHANG Lianju, ZHANG Zonghe, HUANG Jialing. Review on Preparation and Application of Gallic Acid[J]. Biomass Chem Eng, 2010,44(4):48-52.  

    10. [10]

      CHEN Jiahong, WANG Yongmei, WU Dongmei. Study and Application of Purification Technology for Tannic Acid[J]. Chinese J Appl Chem, 2008,28(2):301-304.  

    11. [11]

      Wulff G. Forty Years of Molecular Imprinting in Synthetic Polymers:Origin, Features and Perspectives[J]. Microchim Acta, 2013,180(15):1359-1370.  

    12. [12]

      LI Yuting, ZHENG Jingjing, FANG Guijie. The Characteristics and Elution Approaches of Protein Bulk Imprinting[J]. J Anal Sci, 2011,27(6):785-790.  

    13. [13]

      Bie Z J, Chen Y, Ye J. Boronate-Affinity Glycan-Oriented Surface Imprinting:A New Strategy to Mimic Lectins for the Recognition of an Intact Glycoprotein and Its Characteristic Fragments[J]. Angew Chem Int Ed, 2015,54(35):10211-10215. doi: 10.1002/anie.201503066

    14. [14]

      SHANG Jiaobo, SONG Yanqun, ZHANG Yuanyuan. Preparation of Fe/Si/Al Molecularly Imprinted Particlesand Selective Adsorption Performance for Acid Orange[J]. Acta Sci Circumst, 2016,36(1):185-192.  

    15. [15]

      Strikovsky A, Hradil J, Wulff G. Catalytically Active, Molecularly Imprinted Polymers in Bead Form[J]. React Funct Polym, 2003,54(1/2/3):49-61.  

    16. [16]

      Mayes A G, Mosbach K. Molecularly Imprinted Polymer Beads:Suspension Polymerization Using a Liquid Perfluorocarbon as the Dispersing Phase[J]. Anal Chem, 2003,68(21):3769-3774.  

    17. [17]

      MUHAMMAD Kipayem, MUHAMMAD Turghun, TURAHUN Yunusjan. Screening the Best Functional Monomer for Preparation of Molecularly Imprinted Polymer of 4-Nitrophenol and Its Application on Solid Phase Extraction of Water Sample[J]. Chinese J Appl Chem, 2014,31(4):482-488.  

    18. [18]

      Wang S S, Ye J, Bie Z J. Affinity-tunable Specific Recognition of Glycoproteins via Boronate Affinity-based Controllable Oriented Surface Imprinting[J]. Chem Sci, 2013,5(3):1135-1140.  

    19. [19]

      Xu Z, Ding L, Long Y J. Preparation and Evaluation of Superparamagnetic Surface Molecularly Imprinted Polymer Nanoparticles for Selective Extraction of Bisphenol A in Packed Food[J]. Anal Methods-UK, 2011,3(8):1737-1744. doi: 10.1039/c1ay05206c

    20. [20]

      Xing R R, Wang S S, Bie Z J. Preparation of Molecularly Imprinted Polymers Specific to Glycoproteins, Glycans and Monosaccharides via Boronate Affinity Controllable-oriented Surface Imprinting[J]. Nat Protoc, 2017,12(5):964-987. doi: 10.1038/nprot.2017.015

    21. [21]

      TANG Ting, TANG Chuangui, ZENG Yanbo. Preparation of Surface Molecularly Imprinted Polymer Based on CNTs/SiO2 and Its Application in Electrochemical Detecting Rutin[J]. J Instrum Anal, 2015,34(11):1253-1258. doi: 10.3969/j.issn.1004-4957.2015.11.007

    22. [22]

      ZHU Lili, CAO Yuhua, CAO Guangqun. Preparation and Application of Core-Shell Magnetic Imprinted Nanoparticles for Bisphenol A[J]. Chinese J Anal Chem, 2013,41(11):1724-1728.  

    23. [23]

      FU Qingtao, HE Tingting, YU Lianqing. Preparation and Application of Silica Microspheres with Magnetic Core/Mesoporous Silica Shell[J]. Prog Chem, 2010,22(6):1116-1124.  

    24. [24]

      WU Yunxia, HUANG Jing, YIN Zhengzhi. Properties of Rhodamine B' Magnetic Molecularly Imprinted Polymers Prepared from the Suspension Polymerization Method[J]. Chinese J Appl Chem, 2013,30(12):1481-1488.  

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Yuan CONGYunhao WANGWanping LIZhicheng ZHANGShuo LIUHuiyuan GUOHongyu YUANZhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219

    16. [16]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    17. [17]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(1)
  • Abstract views(1477)
  • HTML views(836)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return