Citation: LU Cheng, LI Lin, YAN Peng, ZHANG Nan, CHEN Wuchao, ZHANG Gongjun, ZHOU Xingfei. Effect of Copper Ions on the Aggregation of Human Islet Amyloid Polypeptide(11~28)[J]. Chinese Journal of Applied Chemistry, ;2018, 35(2): 147-153. doi: 10.11944/j.issn.1000-0518.2018.02.170378 shu

Effect of Copper Ions on the Aggregation of Human Islet Amyloid Polypeptide(11~28)

  • Corresponding author: ZHOU Xingfei, zhouxingfei@nbu.edu.cn
  • Received Date: 23 October 2017
    Revised Date: 29 November 2017
    Accepted Date: 18 December 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.11474173), the Zhejiang Provincial Natural Science Foundation(No.LY18A040003)the National Natural Science Foundation of China 11474173the Zhejiang Provincial Natural Science Foundation LY18A040003

Figures(6)

  • Human islet amyloid polypeptide(hIAPP) is closely associated with type 2 diabetes mellitus(T2DM), which is one of possible pathogenic factors of islet beta cell apoptosis. It has been suggested that the environmental factors(such as metal ions, pH and temperature) have great effects on the aggregation process of hIAPP. In this study, we investigate the influence of copper(Ⅱ) ions on the aggregation of hIAPP and its fragments by a variety of biophysical methods. Atomic force microscope(AFM) and thioflavin T(ThT) fluorescence measurements show that the copper ions can inhibit hIAPP(1~37) and hIAPP(11~28) to aggregate into fibers. In addition, the micro-Fourier transform infrared spectroscopy(Micro-FTIR) shows that copper ions can restrain the transition from alpha helices structure to beta sheets formation during the peptide incubation. By the single amino acid mutation experiment, we speculate that the His18 in hIAPP(11~28) may have a dominant effect on the aggregation behavior and the interaction with copper ions.
  • 加载中
    1. [1]

      Ashraf G M, Greig N H, Khan T A. Protein Misfolding and Aggregation in Alzheimer's Disease and Type 2 Diabetes Mellitus[J]. CNS Neurol Disord-Dr, 2014,13(7):1280-1293. doi: 10.2174/1871527313666140917095514

    2. [2]

      Detoma A S, Salamekh S, Ramamoorthy A. Misfolded Proteins in Alzheimer's Disease and Type Ⅱ Diabetes[J]. Chem Soc Rev, 2011,41(2):608-621.  

    3. [3]

      WANG Chengke, WANG Zhenxin. Screening of Cu(Ⅱ) Ion Induced β-Amyloid Peptide Aggregation Inhibitor and Their Molecular Structure Analysis[J]. Chinese J Appl Chem, 2016,33(7):834-840. doi: 10.11944/j.issn.1000-0518.2016.07.150375 

    4. [4]

      LV Xiaoping, TAN Xiangshi. Metals Homeostasis and Related Proteins in Alzheimer's Disease[J]. Prog Chem, 2013,25(4):511-519.  

    5. [5]

      Association A D. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus[J]. Diabetes Care, 2010,33(Suppl 1):s62-s69.  

    6. [6]

      Chimon S, Shaibat M A, Jones C R. Evidence of Fibril-Like Beta-Sheet Structures in a Neurotoxic Amyloid Intermediate of Alzheimer's Beta-Amyloid[J]. Nat Struct Mol Biol, 2007,14:1157-1164. doi: 10.1038/nsmb1345

    7. [7]

      Hardy J, Selkoe D J. The Amyloid Hypothesis of Alzheimer's Disease:Progress and Problems on the Road to Therapeutics[J]. Science, 2002,297(5580):353-356. doi: 10.1126/science.1072994

    8. [8]

      Konarkowska B, Aitken J F, Kistler J. The Aggregation Potential of Human Amylin Determines Its Cytotoxicity Towards Islet β-Cells[J]. FEBS J, 2006,273(15):3614-3624. doi: 10.1111/ejb.2006.273.issue-15

    9. [9]

      Cooper G J, Willis A C, Clark A. Purification and Characterization of a Peptide from Amyloid-Rich Pancreases of Type 2 Diabetic Patients[J]. Proc Natl Acad Sci, 1987,84(23):8628-8632. doi: 10.1073/pnas.84.23.8628

    10. [10]

      Zraika S, Hull R L, Udayasankar J. Oxidative Stress is Induced by Islet Amyloid Formation and Time-Dependently Mediates Amyloid-Induced Beta Cell Apoptosis[J]. Diabetologia, 2009,52(4):626-635. doi: 10.1007/s00125-008-1255-x

    11. [11]

      ZHANG Yong, ZHU Junmiao, LIU Changlin. Cu2+ and Zn2+-induced Aggregation of Amyloid-β Peptide[J]. Acta Pharm Sin, 2012,47(3):399-404.  

    12. [12]

      Malisauskas M, Zamotin V, Jass J. Amyloid Protofilaments from the Calcium-binding Protein Equine Lysozyme:Formation of Ring and Linear Structures Depends on pH and Metal Ion Concentration[J]. J Mol Biol, 2003,330(4):879-890. doi: 10.1016/S0022-2836(03)00551-5

    13. [13]

      CUI Chengyi, ZHANG Jinhai, ZHOU Xingfei. Temperature Effects on Growth of Glucagon Fibers[J]. Nucl Sci Tech, 2008,31(11):877-880. doi: 10.3321/j.issn:0253-3219.2008.11.018

    14. [14]

      Bush A I. The Metallobiology of Alzheimer's Disease[J]. Trends Neurosci, 2003,26(4):207-214. doi: 10.1016/S0166-2236(03)00067-5

    15. [15]

      Zargar A H, Bashir M I, Khan A R. Copper, Zinc and Magnesium Levels in Fibrocalculous Pancreatic Diabetes[J]. Exp Clin Endocrinol Diabetes, 2000,108:397-400. doi: 10.1055/s-2000-8135

    16. [16]

      Smith D, Ciccotosto G D, Fodero-Tavoletti M. Concentration Dependent Cu2+ Induced Aggregation and Dityrosine Formation of the Alzheimer's Disease Amyloid-beta Peptide[J]. Biochemistry, 2007,46:2881-2891. doi: 10.1021/bi0620961

    17. [17]

      Masad A, Hayes L, Tabner B J. Copper-mediated Formation of Hydrogen Peroxide from the Amylin Peptide:A Novel Mechanism for Degeneration of Islet Cells in Type-2 Diabetes Mellitus?[J]. FEBS Lett, 2007,581(18):3489-3493. doi: 10.1016/j.febslet.2007.06.061

    18. [18]

      Magrì A, La M D, Nicoletti V G. New Insight in Copper-Ion Binding to Human Islet Amyloid:The Contribution of Metal-Complex Speciation to Reveal the Polypeptide Toxicity[J]. Chemistry, 2016,22(37):13287-13300. doi: 10.1002/chem.201602816

    19. [19]

      Sinopoli A, Magrì A, Milardi D. The Role of Copper(Ⅱ) in the Aggregation of Human Amylin[J]. Metallomics, 2014,6(10):1841-1852. doi: 10.1039/C4MT00130C

    20. [20]

      LI Hongying, GU Ningyu, TANG Jilin. Application of Atomic Force Microscopy Based Single Molecule Force Spectroscopy in Biological Research[J]. Chinese J Appl Chem, 2012,29(12):1356-1363.  

    21. [21]

      Haris P I, Chapman D. Analysis of Polypeptide and Protein Structures Using Fourier Transform Infrared Spectroscopy[J]. Methods Mol Biol, 1994,22:183-202.  

    22. [22]

      DONG Yanming, WANG Mian, WU Yusong. Determination of Degree of Substitution for Phthaloyl Chitosan by FTIR[J]. Chinese J Appl Chem, 2001,18(4):259-263.  

    23. [23]

      Qi R, Luo Y, Ma B. Conformational Distribution and α-Helix to β-Sheet Transition of Human Amylin Fragment Dimer[J]. Biomacromolecules, 2014,15(1):122-131. doi: 10.1021/bm401406e

    24. [24]

      Robbins K J, Liu G, Selmani V. Conformational Analysis of Thioflavin T Bound to the Surface of Amyloid Fibrils[J]. Langmuir, 2012,28(48):16490-16495. doi: 10.1021/la303677t

    25. [25]

      Khurana R, Coleman C, Ionescu-Zanetti C. Mechanism of Thioflavin T Binding to Amyloid Fibrils[J]. J Struct Biol, 2005,151(3):229-238. doi: 10.1016/j.jsb.2005.06.006

    26. [26]

      Faller P, Hureau C, Berthoumieu O. Role of Metal Ions in the Self-assembly of the Alzheimer's Amyloid-β Peptide[J]. Inorg Chem, 2013,52:12193-12206. doi: 10.1021/ic4003059

    27. [27]

      Suzuki K, Miura T, Takeuchi H. Inhibitory Effect of Copper(Ⅱ) on Zinc(Ⅱ)-induced Aggregation of Amyloid-beta Peptide[J]. Biochem Biophys Res Commun, 2001,285(4):991-996. doi: 10.1006/bbrc.2001.5263

    28. [28]

      Goormaghtigh E, Cabiaux V, Ruysschaert J M. Determination of Soluble and Membrane Protein Structure by Fourier Transform Infrared Spectroscopy[J]. Subcell Biochem, 1994,23:329-362. doi: 10.1007/978-1-4615-1863-1

    29. [29]

      Kong J, Yu S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures[J]. Acta Biochim Biophys Sin, 2007,39(8):549-559. doi: 10.1111/abbs.2007.39.issue-8

    30. [30]

      Sánchezlópez C, Cortésmejía R, Miotto M C. Copper Coordination Features of Human Islet Amyloid Polypeptide:The Type 2 Diabetes Peptide[J]. Inorg Chem, 2016,55:10727-10740. doi: 10.1021/acs.inorgchem.6b01963

    31. [31]

      Rivillasacevedo L, Amero C, Quintanar L. Structural Basis for the Inhibition of Truncated Islet Amyloid Polypeptide Aggregation by Cu(Ⅱ):Insights into the Bioinorganic Chemistry of Type Ⅱ Diabetes[J]. Inorg Chem, 2015,54(8):3788-3796. doi: 10.1021/ic502945k

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    3. [3]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    9. [9]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    13. [13]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    14. [14]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    15. [15]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    16. [16]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    17. [17]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    18. [18]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(5)
  • Abstract views(1866)
  • HTML views(1024)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return