Citation: LIN Yangming, QU Yi, YU Xinhong, HAN Yanchun. Research Progress on Modulation of Film Thickness Uniformity of Polymer Films by Inkjet Printing[J]. Chinese Journal of Applied Chemistry, ;2018, 35(2): 129-136. doi: 10.11944/j.issn.1000-0518.2018.02.170346 shu

Research Progress on Modulation of Film Thickness Uniformity of Polymer Films by Inkjet Printing

  • Corresponding author: QU Yi, quyi@cust.edu.cn YU Xinhong, xhyu@ciac.ac.cn
  • Received Date: 20 September 2017
    Revised Date: 26 October 2017
    Accepted Date: 23 November 2017

    Fund Project: the National Key R&D Program of "Strategic Advanced Electronic Materials" 2016YFB0401100the National Key R&D Program of "Strategic Advanced Electronic Materials" 2016YFB0401301Supported by the National Key R&D Program of "Strategic Advanced Electronic Materials"(No.2016YFB0401301, No.2016YFB0401100)

Figures(6)

  • Flat panel displays(FPDs) of polymer light-emitting diodes(PLEDs) attract more attention in this field because of the color tunability of polymer materials within the entire visible spectrum, simple solution processability, and suitability for large area and flexible substrates. For the patterning method of polymer light-emitting films, inkjet printing is a potential technique for applications because of its simple and high efficient patterning process, suitability for solution process, flexibility of the patterning process, and easiness to integration and automatization. The deposition of high quality polymer film is essential for fabricating high-performance PLEDs. However, a ring-shaped film is often formed on the substrate due to the "coffee ring" effect in inkjet printing. Therefore, it is essential to eliminate the "coffee ring" effect to achieve uniform deposition of polymer film. In this paper, we review the progress on avoiding "coffee ring" effect to achieve high uniformity of inkjet printing polymer films.
  • 加载中
    1. [1]

      Pardo D A, Jabbour G E, Peyghambarian N. Application of Screen Printing in the Fabrication of Organic Light-Emitting Devices[J]. Adv Mater, 2000,12(17):1249-1252.  

    2. [2]

      Granlund T, Nyberg T, Roman L S. Patterning of Polymer Light-Emitting Diodes with Soft Lithography[J]. Adv Mater, 2000,12(4):269-273. doi: 10.1002/(ISSN)1521-4095

    3. [3]

      Muller C D, Falcou A, Reckefuss N. Multi-colour Organic Light-emitting Displays by Solution Processing[J]. Nature, 2003,421(6925):829-833. doi: 10.1038/nature01390

    4. [4]

      Blanchet G B, Loo Y L, Rogers J A. Large Area, High Resolution, Dry Printing of Conducting Polymers for Organic Electronics[J]. Appl Phys Lett, 2003,82(3):463-465. doi: 10.1063/1.1533110

    5. [5]

      Hebner T R, Wu C C, Marcy D. Ink-jet Printing of Doped Polymers for Organic Light Emitting Devices[J]. Appl Phys Lett, 1998,72(5):519-521. doi: 10.1063/1.120807

    6. [6]

      Hebner T R, Sturm J C. Local Tuning of Organic Light-emitting Diode Color by Dye Droplet Application[J]. Appl Phys Lett, 1998,73(13):1775-1777.  

    7. [7]

      Chang S C, Bharathan J, Yang Y. Dual-color Polymer Light-emitting Pixels Processed by Hybrid Inkjet Printing[J]. Appl Phys Lett, 1998,73(18):2561-2563. doi: 10.1063/1.122533

    8. [8]

      Kawase T, Shimoda T, Sirringhaus H. Inkjet Printing of Polymer Thin Film Transistors[J]. Thin Solid Films, 2003,438:279-287.  

    9. [9]

      Wang J Z, Gu J, Zenhausern F. Low-cost Fabrication of Submicron All Polymer Field Effect Transistors[J]. Appl Phys Lett, 2006,88(13)133502. doi: 10.1063/1.2191088

    10. [10]

      Marin V, Holder E, Wienk M M. Ink-jet Printing of Electron Donor/Acceptor Blends:Towards Bulk Heterojunction Solar Cells[J]. Macromol Rapid Commun, 2005,26(4):319-324.  

    11. [11]

      Calvert P. Inkjet Printing for Materials and Devices[J]. Chem Mater, 2001,13(10):3299-3305.  

    12. [12]

      Danzebrink R, Aegerter M A. Deposition of Micropatterned Coating Using an Ink-jet Technique[J]. Thin Solid Films, 1999,351(1-2):115-118. doi: 10.1016/S0040-6090(99)00210-2

    13. [13]

      Deegan R D, Bakajin O, Dupont T F. Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops[J]. Nature, 1997,389(6653):827-829. doi: 10.1038/39827

    14. [14]

      Deegan R D, Bakajin O, Dupont T F. Contact Line Deposits in an Evaporating Drop[J]. Phys Rev E, 2000,62(1):756-765. doi: 10.1103/PhysRevE.62.756

    15. [15]

      Deegan R D. Pattern Formation in Drying Drops[J]. Phys Rev E, 2000,61(1):475-485. doi: 10.1103/PhysRevE.61.475

    16. [16]

      Sun J Z, Bao B, He M. Recent Advances in Controlling the Depositing Morphologies of Inkjet Droplets[J]. ACS Appl Mater Interfaces, 2015,7(51):28086-28099. doi: 10.1021/acsami.5b07006

    17. [17]

      Anyfantakis M, Baigl D. Manipulating the Coffee-Ring Effect:Interactions at Work[J]. Chem Phys Chem, 2015,16(13):2726-2734. doi: 10.1002/cphc.v16.13

    18. [18]

      Soltman D, Subramanian V. Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect[J]. Langmuir, 2008,24(5):2224-2231. doi: 10.1021/la7026847

    19. [19]

      van den Berg A M J, de Laat A W M, Smith P J. Geometric Control of Inkjet Printed Features Using a Gelating Polymer[J]. J Mater Chem, 2007,17(7):677-683. doi: 10.1039/B612158F

    20. [20]

      Wang L. Inkjet Printed Colloidal Photonic Crystal Microdot with Fast Response Induced by Hydrophobic Transition of Poly(N-isopropyl acrylamide)[J]. J Mater Chem, 2012,22(40):21405-21411. doi: 10.1039/c2jm33411a

    21. [21]

      Xing R B, Ye T L, Ding Y. Thickness Uniformity Adjustment of Inkjet Printed Light-emitting Polymer Films by Solvent Mixture[J]. Chinese J Chem, 2013,31(11):1449-1454. doi: 10.1002/cjoc.v31.11

    22. [22]

      Yunker P J, Still T, Lohr M A. Suppression of the Coffee-Ring Effect by Shape-Dependent Capillary Interactions[J]. Nature, 2011,476(7360):308-311.  

    23. [23]

      Bigioni T P, Lin X M, Nguyen T T. Kinetically Driven Self Assembly of Highly Ordered Nanoparticle Monolayers[J]. Nat Mater, 2006,5(4):265-270. doi: 10.1038/nmat1611

    24. [24]

      Still T, Yunker P J, Yodh A G. Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops[J]. Langmuir, 2012,28(11):4984-4988. doi: 10.1021/la204928m

    25. [25]

      Tekin E, Holder E, Kozodaev D. Controlled Pattern Formation of Poly[2-methoxy-5-(2'-ethylhexyloxyl)-1, 4-phenylenevinylene](MEH-PPV) by Ink-Jet Printing[J]. Adv Funct Mater, 2007,17(2):277-284. doi: 10.1002/(ISSN)1616-3028

    26. [26]

      Fischer B J. Particle Convection in an Evaporating Colloidal Droplet[J]. Langmuir, 2002,18(1):60-67.  

    27. [27]

      Hu H, Larson R G. Evaporation of a Sessile Droplet on a Substrate[J]. J Phys Chem B, 2002,106(6):1334-1344.  

    28. [28]

      Hu H, Larson R G. Analysis of the Microfluid Flow in an Evaporating Sessile Droplet[J]. Langmuir, 2005,21(9):3963-3971. doi: 10.1021/la047528s

    29. [29]

      Hu H, Larson R G. Marangoni Effect Reverses Coffee-ring Depositions[J]. J Phys Chem B, 2006,110(14):7090-7094. doi: 10.1021/jp0609232

    30. [30]

      Hu H, Larson R G. Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Droplet[J]. Langmuir, 2005,21(9):3972-3980. doi: 10.1021/la0475270

    31. [31]

      Hendarto E, Gianchandani Y B. Size Sorting of Floating Spheres Based on Marangoni Forces in Evaporating Droplets[J]. J Micromech Microeng, 2013,23(7):450-457.  

    32. [32]

      Ristenpart W D, Kim P G, Domingues C. Influence of Substrate Conductivity on Circulation Reversal in Evaporating Drops[J]. Phys Rev Lett, 2007,99(23)234502.  

    33. [33]

      Lim J A, Lee W H, Lee H S. Self-Organization of Ink-jet-Printed Triisopropylsilylethynyl Pentacene via Evaporation-Induced Flows in a Drying Droplet[J]. Adv Funct Mater, 2008,18(2):229-234. doi: 10.1002/(ISSN)1616-3028

    34. [34]

      de Gans B G, Schubert U S. Inkjet Printing of Well-defined Polymer Dots and Arrays[J]. Langmuir, 2004,20(18):7789-7793. doi: 10.1021/la049469o

    35. [35]

      Tekin E, de Gans B J, Schubert U S. Ink-jet Printing of Polymers From Single Dots to Thin Film Libraries[J]. J Mater Chem, 2004,14(17):2627-2632. doi: 10.1039/b407478e

    36. [36]

      Karabasheva S, Baluschev S, Gral K. Microstructures on Soluble Polymer Surfaces via Drop Deposition of Solvent Mixtures[J]. Appl Phys Lett, 2006,89(3)231110.  

    37. [37]

      Ko H Y, Park J, Shin H. Rapid Self-Assembly of Monodisperse Colloidal Spheres in an Ink-Jet Printed Droplet[J]. Chem Mater, 2004,16(22):4212-4215.  

    38. [38]

      Kuang M X, Wang J X, Bao B. Inkjet Printing Patterned Photonic Crystal Domes for Wide Viewing-Angle Displays by Controlling the Sliding Three Phase Contact Line[J]. Adv Opt Mater, 2014,2(1):34-38. doi: 10.1002/adom.201300369

    39. [39]

      Li Y F, Sheng Y J, Tsao H K. Evaporation Stains:Suppressing the Coffee-Ring Effect by Contact Angle Hysteresis[J]. Langmuir, 2013,29(25):7802-7811. doi: 10.1021/la400948e

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    6. [6]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    12. [12]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    15. [15]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    16. [16]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    17. [17]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    18. [18]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    19. [19]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    20. [20]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

Metrics
  • PDF Downloads(4)
  • Abstract views(499)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return