Citation: GU Zhimeng, WANG Ying, ZHAO Min, HAO Qiuhua, SHANG Di, BAI Fengying, XING Yongheng. Synthesis, Structure and Photocatalytic Activity of Triazine-Pyrazole Ruthenium Complexes[J]. Chinese Journal of Applied Chemistry, ;2018, 35(2): 206-215. doi: 10.11944/j.issn.1000-0518.2018.02.170084 shu

Synthesis, Structure and Photocatalytic Activity of Triazine-Pyrazole Ruthenium Complexes

  • Corresponding author: BAI Fengying, baifengying2003@163.com
  • These authors contributed equally to this work
  • Received Date: 27 March 2017
    Revised Date: 11 May 2017
    Accepted Date: 22 June 2017

    Fund Project: the Liaoning Province Students Innovation and Entrepreneurship Projects 201610165047Supported by the National Natural Science Foundation of China(No.21571091), the Liaoning Province Students Innovation and Entrepreneurship Projects(No.201610165047)the National Natural Science Foundation of China 21571091

Figures(6)

  • As the photocatalytic reaction has the advantages of non-pollution, safe and efficient, so it has become a research hotspot of environmental protecting field. Therefore, this work choose 2, 4-two (3, 5-two methyl pyrazole)-6-two ethyl amine-1, 3, 5-three triazine(L1) and 2, 6-di[3-(5-methylpyrazolyl)] pyridine(L2) as the ligands, RuCl3 as the metal source to synthesize three kinds of complexes, [Ru(L1)Cl3](1), [Ru(L2)2]·Cl3(2), and[Ru(L2)2]·(H2BTC)·(HBTC)·H2O(3). At the same time, the complexes were characterized by infrared(IR) spectrometry, ultraviolet-visible(UV-Vis), themogravimetry(TG) and X-ray diffraction, and the photocatalytic degradation of RhB was explored. The results show that the complexes 1~3 have a certain degree of photodegradation effect, the degradation efficiency is 46.8%, 44.7% and 40.4%, respectively. Under the same conditions, the degradation effects of the complexes are better than those corresponding only with metal salts, ligands and H2O2, respectively.
  • 加载中
    1. [1]

      Huang C P, Dong C, Tang Z. Advanced Chemical Oxidation:Its Present Role and Potential Future In Hazardous Waste Treatment[J]. Waste Manage, 1993,13(5):361-377.  

    2. [2]

      Dabrowski A, Hubicki Z, Podkościelny P. Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-Exchange Method[J]. Chemosphere, 2004,56(2):91-106. doi: 10.1016/j.chemosphere.2004.03.006

    3. [3]

      Zhang J, Xu Q, Feng Z. Importance of the Relationship Between Surface Phases and Photocatalytic Activity of TiO2[J]. Angew Chem Int Ed, 2008,47(9):1766-1769.  

    4. [4]

      Jia T, Zhao J, Fu F. Synthesis, Characterization, and Photocatalytic Activity of Zn-Doped SnO2/Zn2SnO4 Coupled Nanocomposites[J]. Int J Photoenergy, 2014,2014(21):1-7.  

    5. [5]

      Liu J, Zhao Y, Shi L. Solvothermal Synthesis of Crystalline Phase and Shape Controlled Sn(4+)-doped TiO2 Nanocrystals:Effects of Reaction Solvent[J]. ACS Appl Mater Interfaces, 2011,3(4):1261-1268. doi: 10.1021/am2000642

    6. [6]

      Udawatte N, Lee M, Kim J. Well-defined Au/ZnO Nanoparticle Composites Exhibiting Enhanced Photocatalytic Activities[J]. ACS Appl Mater Interfaces, 2011,3(11):4531-4538. doi: 10.1021/am201221x

    7. [7]

      Zhang N, Liu S, Fu X. A Simple Strategy for Fabrication of "Plum-Pudding" Type Pd@CeO2 Semiconductor Nanocomposite as a Visible-Light-Driven Photocatalyst for Selective Oxidation[J]. J Phys Chem C, 2011,115(46):22901-22909. doi: 10.1021/jp205821b

    8. [8]

      Lee J, Shim H S, Lee M. Size-Controlled Electron Transfer and Photocatalytic Activity of ZnO-Au Nanoparticle Composites[J]. J Phys Chem Lett, 2011,2(22):2840-2845.  

    9. [9]

      Regulacio M D, Han M Y. Multinary Ⅰ-Ⅲ-Ⅵ2 and Ⅰ2-Ⅱ-Ⅳ-Ⅵ4 Semiconductor Nanostructures for Photocatalytic Applications[J]. Acc Chem Res, 2016,49(3):511-516. doi: 10.1021/acs.accounts.5b00535

    10. [10]

      Fan C M, Peng Y, Zhu Q. Synproportionation Reaction for the Fabrication of Sn2+ Self-Doped SnO2-x Nanocrystals with Tunable Band Structure and Highly Efficient Visible Light Photocatalytic Activity[J]. J Phys Chem C, 2013,117(46):24157-24166. doi: 10.1021/jp407296f

    11. [11]

      Gong Y, Jiang P G, Wang Y X. Metal-organic Frameworks Based on 1, 3, 5-Triazine-2, 4, 6-Triyltrithio-Triacetate:Structures, Topologies, Photoluminescence and Photocatalytic Properties[J]. Dalton Trans, 2013,42(19):7196-7203. doi: 10.1039/c3dt00054k

    12. [12]

      Lim F P L, Luna G, Dolzhenko A V. A One-pot, Three-Component Aminotriazine Annulation onto 5-Aminopyrazole-4-Carbonitriles Under Microwave Irradiation[J]. Tetrahedron Lett, 2015,56(3):521-524. doi: 10.1016/j.tetlet.2014.12.010

    13. [13]

      Bondock S, Tarhoni A E-G, Fadda A A. Facile Route to Novel Pyrazolo[3, 4-d]pyrimidine, Imidazo[1, 2-b]pyrazole, Pyrazolo[3, 4-d] [1, 2, 3] triazine, Pyrazolo[1, 5-c] [1, 3, 5] triazine and Pyrazolo[1, 5-c] [1, 3, 5] Thiadiazine Derivatives[J]. J Heterocycl Chem, 2015,52(2):346-351. doi: 10.1002/jhet.v52.2

    14. [14]

      Abd El-All A S, Osman S A, Roaiah H M F. Potent Anticancer and Antimicrobial Activities of Pyrazole, Oxazole and Pyridine Derivatives Containing 1, 2, 4-Triazine Moiety[J]. Med Chem Res, 2015,24(12):4093-4104. doi: 10.1007/s00044-015-1460-3

    15. [15]

      Kawano M, Kawamichi T, Haneda T. The Modular Synthesis of Functional Porous Coordination Networks[J]. J Am Chem Soc, 2007,129(50):15418-15419. doi: 10.1021/ja0752540

    16. [16]

      Wang X, Xing N, Yan Z D. Preparation, Characterization, Crystal Structures and Catalytic Oxidation Activities of Two Transition Metal Complexes of an N-Heterocyclic Pincer Ligand[J]. Transition Met Chem, 2015,40(2):217-225. doi: 10.1007/s11243-015-9909-2

    17. [17]

      Polson M I J, Medlycott E A, Hanan G S. Ruthenium Complexes of Easily Accessible Tridentate Ligands Based on the 2-Aryl-4, 6-bis(2-pyridyl)-s-triazine Motif:Absorption Spectra, Luminescence Properties, and Redox Behavior[J]. Chemistry, 2004,10(15):3640-3648.  

    18. [18]

      Zheng Z B, Kang S Y, Zhao Y. pH and Copper Ion Luminescence on/off Sensing by a Dipyrazinylpyridine-appended Ruthenium Complex[J]. Sens Actuators B, 2015,221:614-624. doi: 10.1016/j.snb.2015.06.124

    19. [19]

      Zeng Q, Lewis F W, Harwood L M. Role of Ligands in Catalytic Water Oxidation by Mononuclear Ruthenium Complexes[J]. Coord Chem Rev, 2015,304/305:88-101. doi: 10.1016/j.ccr.2015.03.003

    20. [20]

      Zhao Y, Xin X L, Ling B C. Electrocatalytic Self-assembled Film of a Dinucler Ru(Ⅱ) Complex for Highly Selective and Sensitive Nitrite Detection[J]. Mater Lett, 2015,158:211-213. doi: 10.1016/j.matlet.2015.06.019

    21. [21]

      Li L Y, Jia H N, Yu H J. Synthesis, Characterization, and DNA-binding Studies of Ruthenium Complexes[Ru(tpy)(ptn)]2+ and Ru(dmtpy)(ptn)]2+[J]. J Inorg Biochem, 2012,113:31-39. doi: 10.1016/j.jinorgbio.2012.03.008

    22. [22]

      Shoair A F, El-Shobaky A R, Azab E A. Synthesis, Characterization, DNA Binding and Catalytic Applications of Ru(Ⅲ) Complexes[J]. Spectrochim Acta Part A, 2015,151:322-334. doi: 10.1016/j.saa.2015.06.011

    23. [23]

      HUANG Yingping, LIU Defu, ZHANG Shuiying. Visible Light/Fenton Photocatalytic Degradation of Organic Dyes[J]. Chem J Chinese Univ, 2005,26(12):2273-2278. doi: 10.3321/j.issn:0251-0790.2005.12.013 

    24. [24]

      ZHANG Rui, XING Yongheng, TIAN Chunyan. Synthesis, Structure and Spectroscopic Studies of Triazine Pyrazole Copper Complexes[J]. Chinese J Inorg Chem, 2014,30(2):264-270.  

    25. [25]

      Lu H J, Fan Y T, Gao J. Synthesis and Crystal Structure of Yttrium(Ⅲ) and Lanthanide(Ⅲ) Complexes with a New Terpyridine-like Ligand 2, 4-Bis(3, 5-Dimethylpyrazol-1-Yl)-6-Diethylamino-1, 3, 5-Triazine[J]. Coord Chem, 2004,57:693-703. doi: 10.1080/00958970410001720962

    26. [26]

      LUO Yiming, CHEN Zhe, TANG Ruiren. Chemical Reaction Engineering and Technology[J]. Chem React Eng Tech, 2006,22(6):549-553.  

  • 加载中
    1. [1]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    19. [19]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    20. [20]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

Metrics
  • PDF Downloads(0)
  • Abstract views(1587)
  • HTML views(1011)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return