Citation: LIU Xingyu, HU Zhiming, WU Pengfei, DONG Xichao, GUO Changqing, SU Zhiming, LIU Anhua. Processing and Microwave-absorption Properties of Iron-containing SiC Ceramics[J]. Chinese Journal of Applied Chemistry, ;2018, 35(2): 224-231. doi: 10.11944/j.issn.1000-0518.2018.02.170080 shu

Processing and Microwave-absorption Properties of Iron-containing SiC Ceramics

  • Corresponding author: LIU Anhua, ahliu@xmu.edu.com
  • Received Date: 23 March 2017
    Revised Date: 10 April 2017
    Accepted Date: 3 May 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.51603175), the Fundamental Research Funds for the Central Universities(No.20720150082)the Fundamental Research Funds for the Central Universities 20720150082the National Natural Science Foundation of China 51603175

Figures(7)

  • Different mass fraction of iron-containing silicon carbide(Fe/SiC) ceramics was successfully prepared by firstly synthesizing iron(Fe)-containing precursor via blending Fe colloids formed by the reaction of liquid polycarbosilane(PCS) and carbonyl iron with solid PCS and then the cross-linking and pyrolysis. The effects of the introduction of Fe on the component, structure, and magnetic and dielectric properties were systematically studied. When the mass fraction of iron is less than 8.94%, Fe element can significantly promote the decomposition of SiCxOy and generate β-SiC, and the crystallization peak of β-SiC is sharper with increased Fe. But when the Fe mass fraction increases to 11.78%, the main product is Fe3Si; Fe-SiC ceramics are all ferromagnetic, and their saturation magnetization increases exponentially with the increase of iron. Fe/SiC ceramic with 4.19% Fe has a minimum -9.4 dB reflection loss at 12.4 GHz. The bandwidths of less than -5 dB for Fe/SiC cermic with 4.19% and 8.94% Fe are 2.4 GHz and 3.7 GHz, respectively, which can be used as good microwave-absorption materials.
  • 加载中
    1. [1]

      YAO Jun, WANG Xiaoqiang. Preparation and Research Progress of Absorbing Materials in Aerospace[J]. Contemp Chem Ind, 2012,2:169-172. doi: 10.3969/j.issn.1671-0460.2012.02.019

    2. [2]

      LIU Danli, LIU Ping'an, YANG Qingsong. Research Status and Prospect of Wave Absorbing Materials[J]. Mater Rev, 2013,17:74-78.  

    3. [3]

      Gain A K, Han J K, Jang H D. Fabrication of Continuously Porous SiC-Si3N4 Composite Using SiC Powder by Extrusion Process[J]. J Eur Ceram Soc, 2006,26(13):2467-2473. doi: 10.1016/j.jeurceramsoc.2005.06.038

    4. [4]

      Zheng G P, Yin X W, Wang J. Complex Permittivity and Microwave Absorbing Property of Si3N4 SiC Composite Ceramic[J]. JMST, 2012,28(8):745-750.  

    5. [5]

      Liu Y, Luo F, Zhou W C. Dielectric and Microwave Absorption Properties of Ti3SiC2 Powders[J]. J Alloys Compd, 2013,576:43-47. doi: 10.1016/j.jallcom.2013.04.137

    6. [6]

      Heuguet R, Marinel S, Thuault A. Effects of the Susceptor Dielectric Properties on the Microwave Sintering of Alumina[J]. J Am Ceram Soc, 2013,96(12):3728-3736. doi: 10.1111/jace.12623

    7. [7]

      Yin X W, Xue Y Y, Zhang L T. Dielectric, Electromagnetic Absorption and Interference Shielding Properties of Porous Yttria-Stabilized Zirconia/Silicon Carbide Composites[J]. Ceram Int, 2012,38(3):2421-2427. doi: 10.1016/j.ceramint.2011.11.008

    8. [8]

      Seyferth D, Lang H, Sobon C A. Chemical Modification of Preceramic Polymers:Their Reactions with Transition Metal Complexes and Transition Metal Powders[J]. J Inorg Organomet Polym, 1992,2(1):59-77. doi: 10.1007/BF00696536

    9. [9]

      Su X L, Jia Y, Wang J B. Preparation and Microwave Absorption Properties of Fe-Doped SiC Powder Obtained by Combustion Synthesis[J]. Ceram Int, 2013,39(4):3651-3656. doi: 10.1016/j.ceramint.2012.10.194

    10. [10]

      Su X L, Zhou W C, Xu J. Preparation and Dielectric Property of Al and N Co-Doped SiC Powder by Combustion Synthesis[J]. J Am Ceram Soc, 2012,95(4):1388-1393. doi: 10.1111/j.1551-2916.2011.04996.x

    11. [11]

      Yuan J, Yang H J, Hou Z L. Ni-Decorated SiC Powders:Enhanced High-Temperature Dielectric Properties and Microwave Absorption Performance[J]. Powder Technol, 2013,237:309-313. doi: 10.1016/j.powtec.2012.12.020

    12. [12]

      Li D, Jin H B, Cao M S. Production of Ni-Doped SiC Nanopowders and Their Dielectric Properties[J]. J Am Ceram Soc, 2011,94(5):1523-1527. doi: 10.1111/jace.2011.94.issue-5

    13. [13]

      LUO Fa, ZHOU Wancheng, ZHAO Donglin. The Electric and Absorbing Wave Properties of Fibers in Structural Radar Absorbing Materials[J]. J Mater Eng, 2000,2:37-40.  

    14. [14]

      Yang H J, Cao M S, Li Y. Enhanced Dielectric Properties and Excellent Microwave Absorption of SiC Powders Driven with NiO Nanorings[J]. Adv Opt Mater, 2014,2(3):214-219. doi: 10.1002/adom.v2.3

    15. [15]

      Yang H J, Cao W Q, Zhang D Q. NiO Hierarchical Nanorings on SiC:Enhancing Relaxation to Tune Microwave Absorption at Elevated Temperature[J]. ACS Appl Mater Interfaces, 2015,7(13):7073-7077. doi: 10.1021/acsami.5b01122

    16. [16]

      Yu Z J, Li S, Zhang P. Polymer-Derived Mesoporous Ni/SiOC(H) Ceramic Nanocomposites for Efficient Removal of Acid Fuchsin[J]. Ceram Int, 2016,43(5):4520-4526.  

    17. [17]

      Yu Z J, Zhang P, Feng Y. Template-Free Synthesis of Porous Fe3O4/SiOC(H) Nanocomposites with Enhanced Catalytic Activity[J]. J Am Ceram Soc, 2016,99(8):2615-2624. doi: 10.1111/jace.14305

    18. [18]

      Yu Z J, Min H, Zhan J Y. Preparation and Dielectric Properties of Polymer-Derived SiCTi Ceramics[J]. Ceram Int, 2013,39(4):3999-4007. doi: 10.1016/j.ceramint.2012.10.250

    19. [19]

      Yu Z J, Yang L, Zhan J Y. Preparation, Cross-Linking and Ceramization of AHPCS/Cp2ZrCl2 Hybrid Precursors for SiC/ZrC/C Composites[J]. J Eur Ceram Soc, 2012,32(6):1291-1298. doi: 10.1016/j.jeurceramsoc.2011.12.015

    20. [20]

      Yu Z J, Huang M H, Fang Y H. Modification of a Liquid Polycarbosilane with 9-BBN as a High-Ceramic-Yield Precursor for SiC[J]. React Funct Polym, 2010,70(6):334-339. doi: 10.1016/j.reactfunctpolym.2010.02.007

    21. [21]

      Yin X W, Li X M, Zhang L T. Microstructure and Mechanical Properties of Lu2O3-Doped Porous Silicon Nitride Ceramics Using Phenolic Resin as Pore-Forming Agent[J]. Int J Appl Ceram Technol, 2010,7(3):391-398.  

    22. [22]

      Kong L, Yin X W, Zhang L T. Effect of Aluminum Doping on Microwave Absorption Properties of ZnO/ZrSiO4 Composite Ceramics[J]. J Am Ceram Soc, 2012,95(10):3158-3165. doi: 10.1111/jace.2012.95.issue-10

    23. [23]

      Chen X J, Su Z M, Zhang L. Iron Nanoparticle-Containing Silicon Carbide Fibers Prepared by Pyrolysis of Fe(CO)5-Doped Polycarbosilane Fibers[J]. J Am Ceram Soc, 2010,93(1):89-95. doi: 10.1111/jace.2010.93.issue-1

    24. [24]

      Liu A H, Chen J M, Ding S N. Processing and Characterization of Cobalt Silicide Nanoparticle-Containing Silicon Carbide Fibers Through a Colloidal Method and Their Underlying Mechanism[J]. J Mater Chem C, 2014,2(25):4980-4988. doi: 10.1039/C4TC00315B

    25. [25]

      CAI Zhihui. Mechanism of Formation of Near-Stoichiometric SiC Fibers[D]. Xiamen: Xiamen University, 2010(in Chinese). 

    26. [26]

      LIU Ling, CHEN Jianming, DING Shaonan. The Influence of Oxygen Content on the Structure and Properties of Co-SiC Fibers[J]. J Funct Mater, 2014,45(S2):37-40.  

    27. [27]

      Berger A, Pippel E, Woltersdorf J. Nanoprocesses in Polymer-Derived Si—O—C Ceramics:Electronmicroscopic Observations and Reaction Kinetics[J]. Phys Status Solidi A, 2005,202(12):2277-2286. doi: 10.1002/(ISSN)1521-396X

    28. [28]

      Tang X Y, Chen L F, Cheng X. Temperature-Dependent Microstructure and Phase Evolution of Iron-Containing SiC Fibers[J]. Ceram Int, 2014,40(9):14223-14227. doi: 10.1016/j.ceramint.2014.06.011

    29. [29]

      Aphesteguy J C, Damiani A, DiGiovanni D. Microwave-Absorbing Characteristics of Epoxy Resin Composites Containing Nanoparticles of NiZn-and NiCuZn-Ferrites[J]. Phys B, 2009,404(18):2713-2716. doi: 10.1016/j.physb.2009.06.065

    30. [30]

      Giannakopoulou T, Kompotiatis L, Kontogeorgakos A. Microwave Behavior of Ferrites Prepared via Sol Gel Method[J]. J Magn Magn Mater, 2002,246(3):360-365. doi: 10.1016/S0304-8853(02)00106-3

    31. [31]

      Li Q, Yin X W, Duan W Y. Electrical, Dielectric and Microwave-Absorption Properties of Polymer Derived SiC Ceramics in X Band[J]. J Alloys Compd, 2013,565:66-72. doi: 10.1016/j.jallcom.2013.02.176

    32. [32]

      Wang C, Han X J, Xu P. Controlled Synthesis of Hierarchical Nickel and Morphology-Dependent Electromagnetic Properties[J]. J Phys Chem C, 2010,114(7):3196-3203. doi: 10.1021/jp908839r

    33. [33]

      Ohlan A, Singh K, Chandra A. Microwave Absorption Behavior of Core-Shell Structured Poly(3, 4-ethylenedioxy thiophene)-Barium Ferrite Nanocomposites[J]. ACS Appl Mater Interfaces, 2010,2(3):927-933. doi: 10.1021/am900893d

  • 加载中
    1. [1]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    2. [2]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    3. [3]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    4. [4]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    5. [5]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    6. [6]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    7. [7]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    11. [11]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    12. [12]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    16. [16]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    17. [17]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    19. [19]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

Metrics
  • PDF Downloads(8)
  • Abstract views(1872)
  • HTML views(1044)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return