Citation: CAO Baochen, WU Guojie, HE Yupeng, HAN Fushe. A Facile Synthesis of Chiral Phosphinoaryloxazolines[J]. Chinese Journal of Applied Chemistry, ;2018, 35(2): 189-196. doi: 10.11944/j.issn.1000-0518.2018.02.170066 shu

A Facile Synthesis of Chiral Phosphinoaryloxazolines

  • Corresponding author: WU Guojie, gjwu@ciac.ac.cn HE Yupeng, yupeng.he@lnpu.edu.cn
  • Received Date: 10 March 2017
    Revised Date: 12 April 2017
    Accepted Date: 3 May 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21602215), the Fund of the Engineering Research Center of Marine Bioresources Comprehensive Utilization, SOA(No.MBRCU201604)the Fund of the Engineering Research Center of Marine Bioresources Comprehensive Utilization, SOA MBRCU201604the National Natural Science Foundation of China 21602215

Figures(2)

  • As a widely used class of privileged ligands, phosphinoaryloxazolines(PHOX) have attracted much attention from chemists. However, the previous synthetic methods have problems of long steps, low yield and difficult separation and so on. In this article, a simple and efficient procedure for the synthesis of phosphinoaryloxazolines(PHOX) has been developed. First, 2-(diphenylphosphino)benzoic acid was condensed with various enantiomerically pure amino alcohols in the presence of 1-hydroxylbenzotriazole(HOBt) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDCI) in dimethylformamide to give the corresponding (amido alcohol)s amides in excellent yields. Then the (amido alcohol)s amides were subjected to the oxazoline ring formation by treatment with triphenylphosphine, triethylamine and carbon tetrachloride in acetonitrile to afford a series of phosphinooxazolines in 64%~86% total yields. Subsequently, (S)-t-BuPHOX was applied in the palladium-catalyzed decarboxylative Tsuji allylations of β-ketoester, giving an excellent isolated yield of 80% with an enantiomeric excess of 84%. The new synthetic procedure has the advantages of using readily available starting materials, mild reaction conditions, and high overall yields.
  • 加载中
    1. [1]

      Sprinz J, Helmchen G. Phosphinoaryl-and Phosphinoalkyl Oxazolines as New Chiral Ligands for Enantioselective Catalysis:Very High Enantioselectivity in Palladium Catalyzed Allylic Substitutions[J]. Tetrahedron Lett, 1993,34(11):1769-1772. doi: 10.1016/S0040-4039(00)60774-8

    2. [2]

      von Matt P, Pfaltz A. Chiral Phosphinoaryldihydrooxazoles as Ligands in Asymmetric Catalysis:Pd-Catalyzed Allylic Substitution[J]. Angew Chem Int Ed, 1993,32(4):566-568. doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Dawson G J, Frost C, Williams J M J. Asymmetric Palladium Catalysed Allylic Substitution Using Phosphorus Containing Oxazoline Ligands[J]. Tetrahedron Lett, 1993,34(19):3149-3150. doi: 10.1016/S0040-4039(00)93403-8

    4. [4]

      Helmchen G, Pfaltz A. Phosphinooxazolines——A New Class of Versatile, Modular P, N-Ligands for Asymmetric Catalysis[J]. Acc Chem Res, 2000,33(6):336-345. doi: 10.1021/ar9900865

    5. [5]

      Bausch C C, Pfaltz A. PHOX Ligands. Privileged Chiral Ligands and Catalysts[M]. Wiley-VCH Verlag GmbH & Co. KgaA, 2006:221-256.

    6. [6]

      Hargaden G C, Guiry P J. Recent Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis[J]. Chem Rev, 2009,109(6):2505-2550. doi: 10.1021/cr800400z

    7. [7]

      Carroll M P, Guiry P J. P, N Ligands in Asymmetric Catalysis[J]. Chem Soc Rev, 2014,43(3):819-833. doi: 10.1039/C3CS60302D

    8. [8]

      Allen J V, Dawson G J, Frost C G. Preparation of Novel Sulfur and Phosphorus Containing Oxazolines as Ligands for Asymmetric Catalysis[J]. Tetrahedron, 1994,50(3):799-808. doi: 10.1016/S0040-4020(01)80795-X

    9. [9]

      Gant T G, Meyers A I. The Chemistry of 2-Oxazolines(1985 present)[J]. Tetrahedron, 1994,50(8):2297-2360. doi: 10.1016/S0040-4020(01)86953-2

    10. [10]

      Koch G, Lloyd-jones G C, Loiseleur O. Synthesis of Chiral (Phosphinoaryl) Oxazolines, a Versatile Class of Ligands for Asymmetric Catalysis[J]. Recl Trav Chim Pays-Bas, 1995,114(4/5):206-210.  

    11. [11]

      Peer M, de Jong J C, Kiefer M. Preparation of Chiral Phosphorus, Sulfur and Selenium Containing 2-Aryloxazolines[J]. Tetrahedron, 1996,52(21):7547-7583. doi: 10.1016/0040-4020(96)00267-0

    12. [12]

      Tani K, Behenna D C, McFadden R M. A Facile and Modular Synthesis of Phosphinooxazoline Ligands[J]. Org Lett, 2007,9(13):2529-2531.  

    13. [13]

      Sedinkin S L, Rath N P, Bauer E B. Synthesis and Structural Characterization of New Phosphinooxazoline Complexes of Iron[J]. J Organomet Chem, 2008,693(18):3081-3091. doi: 10.1016/j.jorganchem.2008.06.031

    14. [14]

      Wu W Q, Peng Q, Dong D X. A Dramatic Switch of Enantioselectivity in Asymmetric Heck Reaction by Benzylic Substituents of Ligands[J]. J Am Chem Soc, 2008,130(30):9717-9725. doi: 10.1021/ja7104174

    15. [15]

      Marinho V R, Rodrigues A I, Burke A J. Novel Chiral P, O-Ligands for Homogeneous Pd(0) Catalysed Asymmetric Allylic Alkylation Reactions[J]. Tetrahedron:Asymmetry, 2008,19(4):454-458. doi: 10.1016/j.tetasy.2008.01.024

    16. [16]

      Zhu S F, Xie J B, Zhang Y Z. Well-Defined Chiral Spiro Iridium/Phosphine-Oxazoline Cationic Complexes for Highly Enantioselective Hydrogenation of Imines at Ambient Pressure[J]. J Am Chem Soc, 2006,128(39):12886-12891. doi: 10.1021/ja063444p

    17. [17]

      Zhang X P, Liang H Y, Cao Z K. Enantioselective Synthesis of Axially Chiral Biaryl Monophosphine Oxides via Direct Asymmetric Suzuki Coupling and DFT Investigations of the Enantioselectivity[J]. ACS Catal, 2014,4(5):1390-1397. doi: 10.1021/cs500208n

    18. [18]

      Burrell G, Evans J M, Jones G E. The Action of Diethylaminosulphur Trifluoride(dast) on Trans-4-Amido-3-chromanols:Preparation of cis-Amidoalcohols via Oxazolines[J]. Tetrahedron Lett, 1990,31(25):3649-3652. doi: 10.1016/S0040-4039(00)94467-8

    19. [19]

      Vorbrüggen H, Krolikiewicz K. A Simple Synthesis of Δ2-Oxazolines, Δ2-Oxazines, Δ2-Thiazolines and Δ2-Imidazolines[J]. Tetrahedron Lett, 1981,22(45):4471-4474. doi: 10.1016/S0040-4039(01)93017-5

    20. [20]

      Meyers A I, Hoyer D. Stereochemistry of the Ph3P-CCl4 Mediated Cyclization of Carboxylic Acids and 1, 2-Amino Alcohols(Vorbruggen Method)[J]. Tetrahedron Lett, 1985,26(39):4687-4690. doi: 10.1016/S0040-4039(00)94924-4

    21. [21]

      Vorbrüggen H, Krolikiewicz K. A Simple Synthesis of Δ2-Oxazines, Δ2-Oxazines, Δ2-Thiazolines and 2-Substituted Benzoxazoles[J]. Tetrahedron, 1993,49(41):9353-9372. doi: 10.1016/0040-4020(93)80021-K

    22. [22]

      Robert A Craig Ⅱ, Steven A Loskot, Brian M Stoltz. Palladium-Catalyzed Enantioselective Decarboxylative Allylic Alkylation of Cyclopentanones[J]. Org Lett, 2015,17(21):5160-5163. doi: 10.1021/acs.orglett.5b02376

  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    2. [2]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    3. [3]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    4. [4]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    7. [7]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    8. [8]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    9. [9]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    12. [12]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    13. [13]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    14. [14]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    15. [15]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

Metrics
  • PDF Downloads(2)
  • Abstract views(794)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return