Citation: ZHANG Deguang, LI Yanguo, CUI Lei, LI Yuesheng. Controlled Preparation of Crosslinked Isotactic Polypropylene via Diels-Alder Reaction[J]. Chinese Journal of Applied Chemistry, ;2018, 35(2): 174-180. doi: 10.11944/j.issn.1000-0518.2018.02.170056 shu

Controlled Preparation of Crosslinked Isotactic Polypropylene via Diels-Alder Reaction

  • Corresponding author: LI Yanguo, liyg@ciac.ac.cn LI Yuesheng, ysli@tju.edu.cn
  • Received Date: 2 March 2017
    Revised Date: 22 March 2017
    Accepted Date: 28 March 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21234006)the National Natural Science Foundation of China 21234006

Figures(5)

  • Cross-linking is a commonly used method for polyolefin modification to improve the material's mechanical properties, thermo-and chemical resistance. High molecular mass(Mw) iPPs containing reactive anthracene groups were synthesized by coordination copolymerization. Crosslinked iPP films could be prepared by adding bi-functional N, N'-1, 4-phenylene bismaleimide as a crosslinker to react with the pendent anthracene groups during the solvent casting process of the film. The cross-linking degree of the films could be easily tuned by the addition of the crosslinker. Characteristic absorption bands in Fourier transform infrared(FT-IR) spectra of the crosslinked films and gravimetric analysis of the insoluble portion could be used to determine the crosslinking degree. Differential scanning calorimetry(DSC) and wide-angle X-ray diffraction(WAXD) analysis revealed that the crystallinity and crystallization capability of the films decreased followed with the increase of cross-linking degree, which were mainly caused by the restricted chain movement. On the other hand, according to DMA analysis, the loss modulus dropped gradually with the increase of cross-linking degree, indicating the loss of toughness brought by cross-linking. The increased Tg detected from loss angle curves indicated the enhancement of thermoresistance. The tensile stress of the crosslinked iPP films were improved by forming polymer network containing more force bearing point, while the elongation at break dropped drastically because of the chains' poor movability.
  • 加载中
    1. [1]

      Chodak I. Properties of Cross-linked Polyolefin-based Materials[J]. Prog Polym Sci, 1995,20(6):1165-1199. doi: 10.1016/0079-6700(95)98859-N

    2. [2]

      Yuan X P, Chung T C M. Novel Solution to Oil Spill Recovery:Using Thermodegradable Polyolefin Oil Superabsorbent Polymer(Oil SAP)[J]. Energy Fuels, 2012,26(8):4896-4902. doi: 10.1021/ef300388h

    3. [3]

      Zhang M, Kim H K, Chalkova E. New Polyethylene Based Anion Exchange Membranes(PE-AEMs) with High Ionic Conductivity[J]. Macromolecules, 2011,44(15):5937-5946. doi: 10.1021/ma200836d

    4. [4]

      Yuan X P, Chung T C M. Cross-linking Effect on Dielectric Properties of Polypropylene Thin Films and Applications in Electric Energy Storage[J]. Appl Phys Lett, 2011,98(6):0629011-0629013.  

    5. [5]

      Konoval I V, Konovalenko N G, Ivanchev S S. Steric Structuring of Polyolefins by Chemical Methods[J]. Russ Chem Rev, 1988,57(1):72-81. doi: 10.1070/RC1988v057n01ABEH003336

    6. [6]

      Gedde U W. Molecular Structure of Crosslinked Polyethylene as Revealed by 13C Nuclear Magnetic Resonance and Infrared Spectroscopy and Gel Permeation Chromatography[J]. Polymer, 1986,27(2):269-274. doi: 10.1016/0032-3861(86)90339-3

    7. [7]

      Borsig E, Fiedlerová A, Lazár M. Efficiency of Chemical Cross-Linking of Polypropylene[J]. J Macromol Sci Chem, 1981,16(2):513-528. doi: 10.1080/00222338108058488

    8. [8]

      Baird W E, Joonase P, Ross A. Bibliographies on Radiation Chemistry:Ⅵ.Patents on Irradiation Cross Linking of Polymers[J]. Radiat Phys Chem, 1982,19(5):339-360.  

    9. [9]

      Zhang L H, Zhou M T, Cheng D L. Mechanism of Radiation Crosslinking of Polymers and Its Relationship with Structural Multiplicity[J]. Radiat Phys Chem, 1993,42(1/3):125-128.  

    10. [10]

      Babic D, Gal O, Stannett V T. Molecular Weight Changes in γ-Irradiated Polyethylene Containing Antioxidants[J]. Radiat Phys Chem, 1985,25(1/3):343-347.  

    11. [11]

      Luo Y X, Li P, Jiang B Z. The Estimation of the Polydispersity Index of Molecular Weight Distribution with a Radiation Crosslinking Technique:Ⅰ.The Effect of Molecular Weight Distribution on the Radiation Crosslinking of Polyethylene[J]. Int J Radiat Appl Instrum, 1987,29(6):415-418.  

    12. [12]

      Cartasegna S. Silane-Grafted/Moisture-Curable Ethylene-Propylene Elastomers for the Cable Industry[J]. Rubber Chem Technol, 1986,59(5):722-739.  

    13. [13]

      Lazár M, Rado R, Rychlý J. Crosslinking of Polyolefins[J]. Adv Polym Sci, 1990,95(1):149-197.  

    14. [14]

      Borsig E, Lazár M, Malcherová E. Crosslinking of Atactic Polypropylene by the System Peroxide-pentaerythritol Tetraallyl Ether[J]. Polym Int, 2010,30(3):367-370.  

    15. [15]

      Dong J Y, Hong A, Chung T C M. Synthesis of Linear Polyolefin Elastomers Containing Divinylbenzene Units and Applications in Cross-Linking, Functionalization, and Graft Reactions[J]. Macromolecules, 2003,36(16):6000-6009. doi: 10.1021/ma021749s

    16. [16]

      Zhang D G, Pan L, Li Y G. Synthesis and Reaction of Anthracene-containing Polypropylene:A Promising Strategy for Facile, Efficient Functionalization of Isotactic Polypropylene[J]. Macromolecules, 2017,50(6):2276-2283.  

    17. [17]

      Domski G J, Lobkovsky E B, Coates G W. Polymerization of α-Olefins with Pyridylamidohafnium Catalysts Living Behavior and Unexpected Isoselectivity from a Cs-symmetric Catalyst Precursor[J]. Macromolecules, 2007,40(9):3510-3513.  

    18. [18]

      Wang X Y, Wang Y X, Shi X C. Syntheses of Well-Defined Functional Isotactic Polypropylenes via Efficient Copolymerization of Propylene with ω-Halo-α-alkenes by Post-metallocene Hafnium Catalyst[J]. Macromolecules, 2014,47(2):552-559. doi: 10.1021/ma4022696

    19. [19]

      Wang X Y, Wang Y X, Li Y G. Convenient Syntheses and Versatile Functionalizations of Isotactic Polypropylene Containing Plentiful Pendant Styrene Groups with High Efficiency[J]. Macromolecules, 2015,48(7):1991-1998. doi: 10.1021/acs.macromol.5b00128

    20. [20]

      Bratschkov C. FTIR Spectroscopy Study of the UV Irradiation Induced Changes in an Anthracene Containing Copolymer[J]. Eur Polym J, 2001,37(6):1145-1149. doi: 10.1016/S0014-3057(00)00226-3

    21. [21]

      Wang X C, Tzoganakis C, Rempel G L. Chemical Modification of Polypropylene with Peroxide/Pentaerythritol Triacrylate by Reactive Extrusion[J]. J Appl Polym Sci, 1996,61(8):1395-1404. doi: 10.1002/(ISSN)1097-4628

    22. [22]

      Cheng S Z D, Janimak J, Zhang A Q. Isotacticity Effect on Crystallization and Melting in Polypropylene Fractions:1.Crystalline Structures and Thermodynamic Property Changes[J]. Polymer, 1991,32(4):648-655. doi: 10.1016/0032-3861(91)90477-Z

    23. [23]

      Gahleitner M, Jääskeläinen P, Ratajski E. Propylene Ethylene Random Copolymers:Comonomer Effects on Crystallinity and Application Properties[J]. J Appl Polym Sci, 2005,95(5):1073-1081. doi: 10.1002/app.21308

    24. [24]

      Lugão A B, Hutzler B, Ojeda T. Reaction Mechanism and Rheological Properties of Polypropylene Irradiated under Various Atmospheres[J]. Radiat Phys Chem, 2000,57(3/6):389-392.  

  • 加载中
    1. [1]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    2. [2]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    3. [3]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    7. [7]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    13. [13]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    14. [14]

      Yuan Chun Lijun Yang Jinyue Yang Wei Gao . Ideological and Political Design of BZ Oscillatory Reaction Experiment. University Chemistry, 2024, 39(2): 72-76. doi: 10.3866/PKU.DXHX202308072

    15. [15]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    19. [19]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(4)
  • Abstract views(1029)
  • HTML views(234)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return