Citation: JIN Shengzhong, ZHANG Aiqing. Preparation and Characterization of Ru@Pt Core-Shell Nanoparticles with Shell in Atomic Thickness[J]. Chinese Journal of Applied Chemistry, ;2018, 35(2): 239-244. doi: 10.11944/j.issn.1000-0518.2018.02.170053 shu

Preparation and Characterization of Ru@Pt Core-Shell Nanoparticles with Shell in Atomic Thickness

  • Corresponding author: ZHANG Aiqing, 123269698@qq.com
  • Received Date: 1 March 2017
    Revised Date: 27 March 2017
    Accepted Date: 2 May 2017

    Fund Project: the National Natural Science Foundation of China 51373201Supported by the National Natural Science Foundation of China(No.51373201)

Figures(4)

  • Through regulating the amount of PtCl2 and the temperature of reduction, Ru@Pt core-shell monodisperse nanoparticles comprising a Ru core covered with an approximately 1.5 monolayer-thick shell of Pt atoms were synthesized by using a sequential polyol process with RuCl3·xH2O and PtCl2 as precursors, ethylene glycol as the reductant and polyvinylpyrrolidone as the stabilizer. The microstructure, size-distribution, crystal structure and phase composition of nanoparticles were characterized by transmission electron microscopy(TEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and other analytical methods. The results indicate that the nanoparticles are uniformly distributed and spherical with 3.57 nm average size. The core is about 2.49 nm and the shell is about 0.55 nm. Pt shell has a nice crystalline phase which is mainly {111} lattice fringes. The production of electronic effect is found between Ru core and Pt shell, and this makes the diffraction peak of Pt and the electron binding energy of Ru and Pt produce a certain offset. The factors controlling the thickness of the shell of nanoparticles and strengthening the electronic effect between Ru core and Pt shell have been investigated preliminarily. The Ru@Pt core-shell nanoparticles are expected to have great potential in catalysis and other fields.
  • 加载中
    1. [1]

      ZHANG Xin, CHU Chengcan, HUANG Kaihua. Preparation of Au@Pt Core-Shell Nanoparticles Using Polyelectrolyte Multilayers as Nanoreactors[J]. Chinese J Appl Chem, 2012,29(12):1433-1437.  

    2. [2]

      TANG Xuehong, WU Ying, ZHANG Yu. Preparation of Au Core/Ag Shell Nanoparticles by Photocatalysis Reduction Method and Electrocatalysis of Its Modified Electrode[J]. Chinese J Appl Chem, 2009,26(4):471-474.  

    3. [3]

      B.Gawande M, Goswami A, Asefa T. Core-shell Nanoparticles:Synthesis and Applications in Catalysis and Electrocatalysis[J]. Chem Soc Rev, 2015,44(21):7540-7590. doi: 10.1039/C5CS00343A

    4. [4]

      Wei Z D, Feng Y C, Li L. Electrochemically Synthesized Cu/Pt Core-Shell Catalysts on a Porous Carbon Electrode for Polymer Electrolyte Membrane Fuel Cells[J]. J Power Sources, 2008,180(1):84-91. doi: 10.1016/j.jpowsour.2008.01.086

    5. [5]

      Xu Q, Yan J M, Zhang X B. One-Step Seeding Growth of Magnetically Recyclable Au@Co Core-Shell Nanoparticles:Highly Efficient Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane[J]. J Am Chem Soc, 2010,132(15):5326-5327. doi: 10.1021/ja910513h

    6. [6]

      Sieben J M, Comignani V, E. Alvarez A. Synthesis and Characterization of Cu Core Pt-Ru Shell Nanoparticles for the Electro-Oxidation oF Alcohols[J]. Int J Hydrogen Energy, 2014,39(16):8667-8674. doi: 10.1016/j.ijhydene.2013.12.064

    7. [7]

      Liu Z Y, Sun H J, Wang D B. The Modifiable Character of a Novel Ru-Fe-B/ZrO2 Catalyst for Benzene Selective Hydrogenation to Cyclohexene[J]. Chinese J Chem, 2010,28(10):1927-1934. doi: 10.1002/cjoc.201090321

    8. [8]

      Cui X J, Surkus A E, Junge K. Highly Selective Hydrogenation of Arenes Using Nanostructured Ruthenium Catalysts Modified with a Carbon Nitrogen Matrix[J]. Nat Commun, 2016,7:11326-11333. doi: 10.1038/ncomms11326

    9. [9]

      He S C, Fei Z Y, Li L. Synthesis and Catalytic Activity of M@SiO2(M=Ag, Au, and Pt) Nanostructures via "Core to Shell" and "Shell then Core" Approaches[J]. Chinese J Catal, 2013,34(11):2098-2109. doi: 10.1016/S1872-2067(12)60716-5

    10. [10]

      Yang P W, Liu Y T, Hsu S P. Core shell Nanocrystallite Growth via Heterogeneous Interface Manipulation[J]. Cryst Eng Commun, 2015,17(45):8623-8631. doi: 10.1039/C5CE01550B

    11. [11]

      Wu J C S, Chen W C. A Novel BN Supported Bi-Metal Catalyst for Selective Hydrogenation of Crotonaldehyde[J]. Appl Catal A, 2005,289(2):179-185. doi: 10.1016/j.apcata.2005.04.044

    12. [12]

      Beier M J, Andanson J M, Mallat T. Ionic Liquid-supported Pt Nanoparticles as Catalysts for Enantioselective Hydrogenation[J]. ACS Catal, 2012,2(3):337-340. doi: 10.1021/cs2006197

    13. [13]

      Alayoglu S, Eichhorn B. Rh-Pt Bimetallic Catalysts:Synthesis, Characterization, and Catalysis of Core-Shell, Alloy, and Monometallic Nanoparticles[J]. J Am Chem Soc, 2008,130(51):17479-17486. doi: 10.1021/ja8061425

    14. [14]

      GU Qiang, ZHANG Kai, HU Chunling. The Breaking Process of Core-Shell Emulsion Affected by Electrolytes[J]. Chinese J Appl Chem, 2006,23(2):122-125.  

    15. [15]

      Narayanan R, A.El-Sayed M. Catalysis with Transition Metal Nanoparticles in Colloidal Solution:Nanoparticle Shape Dependence and Stability[J]. J Phys Chem B, 2005,109(26):12663-12676. doi: 10.1021/jp051066p

    16. [16]

      Lia C, Yamauchi Y. Facile Solution Synthesis of Ag@Pt Core-Shell Nanoparticles with Dendritic Pt Shells[J]. Phys Chem Chem Phys, 2013,15(10):3490-3496. doi: 10.1039/c3cp44313b

    17. [17]

      M.Bratlie K, Lee H, Komvopoulos K. Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity[J]. Nano Lett, 2007,7(10):3097-3101. doi: 10.1021/nl0716000

    18. [18]

      Liu Y T, Yuan Q B, Duan D H. Electrochemical Activity and Stability of Core-Shell Fe2O3/Pt Nanoparticles for Methanol Oxidation[J]. J Power Sources, 2013,243(6):622-629.  

    19. [19]

      Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-ray Photo-electron Spectroscopy[M]. Perkin-Elmer Corporation:Minnesota, 1992:186-187.

    20. [20]

      Nan H X, Tian X L, Luo J M. A Core Shell Pd1Ru1Ni2@Pt/C Catalyst with a Ternary Alloy Core and Pt Monolayer:Enhanced Activity and Stability Towards the Oxygen Reduction Reaction by the Addition of Ni[J]. J Mater Chem A, 2016,4(3):847-855. doi: 10.1039/C5TA07740K

    21. [21]

      Alayoglu S, Nilekar A U, Mavrikakis M. Ru Pt Core Shell Nanoparticles for Preferential Oxidation of Carbon Monoxide in Hydrogen[J]. Nat Mater, 2008,7(4):333-338. doi: 10.1038/nmat2156

    22. [22]

      Atienza D O, Allison T C, Tong Y Y C. Spatially Resolved Electronic Alterations As Seen by in Situ 195Pt and 13CO NMR in Ru@Pt and Au@Pt Core-Shell Nanoparticles[J]. J Phys Chem C, 2012,116(50):26480-26486. doi: 10.1021/jp310313k

  • 加载中
    1. [1]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    4. [4]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    5. [5]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    8. [8]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    13. [13]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    14. [14]

      Jin Jia Shangda Jiang . Is the z Axis Special in Atomic Structure?. University Chemistry, 2024, 39(6): 400-404. doi: 10.12461/PKU.DXHX202403091

    15. [15]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(1)
  • Abstract views(1402)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return