Citation: CHEN Xiuhong, HU Liuyong, QIAO Wenqiang, WANG Zhiyuan. Synthesis and Properties of Near-Infrared Electrochromic Polymers Containing Diketopyrrolopyrrole, Benzothiadiazole and Thiophene[J]. Chinese Journal of Applied Chemistry, ;2018, 35(2): 165-173. doi: 10.11944/j.issn.1000-0518.2018.02.170045 shu

Synthesis and Properties of Near-Infrared Electrochromic Polymers Containing Diketopyrrolopyrrole, Benzothiadiazole and Thiophene

  • Corresponding author: QIAO Wenqiang, wqqiao@ciac.ac.cn WANG Zhiyuan, wwjoy@ciac.ac.cn
  • Received Date: 27 February 2017
    Revised Date: 6 April 2017
    Accepted Date: 9 May 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21474102, No.21474105)the National Natural Science Foundation of China 21474102the National Natural Science Foundation of China 21474105

Figures(6)

  • Donor-acceptor type polymers are new electrochromic materials which are tunable and colorfull. However, the electrochromic properties such as optical contrast and stability need to be further improved. Low band gap conjugated polymers containing diketopyrrolopyrrole(DPP), benzothiadiazole(BTZ) and thiophen (T) were synthesized and their electrochromic properties were studied. Four polymers P1~P4 were obtained by adjusting the molar ratio of the three monomers(n(DPP):n(BTZ):n(T)=1:0:1, 1.5:0.5:1, 2:1:1 and 3:2:1, respectively). The absorption and electrochromic properties of the polymers depend on the ratios of DPP, BTZ and T units in the polymers. It was found that these polymers have high optical contrast(△T:50%~60%) and coloration efficiency(CE:300~600 cm2/C) in the near-infrared region. In particular, △T of polymer P3 reached the high value of 63% and CE of polymer P4 was 471 cm2/C at 1550 nm. The polymers containing BTZ groups have higher optical contrast at both the near-infrared(NIR) region and the maximum absorption wavelength than that of polymer P1 in which the BTZ content is zero. Polymers containing BTZ unit shows better electrochromic stability, which is attributed to its higher oxidation potential and better electrochemical stability. It provides a new way to design high-performance electrochromic polymers.
  • 加载中
    1. [1]

      Niklasson G A, Granqvist C G. Electrochromics for Smart Windows:Thin Films of Tungsten Oxide and Nickel Oxide, and Devices Based on These[J]. J Mater Chem, 2007,17(2):127-156. doi: 10.1039/B612174H

    2. [2]

      Xun S, LeClair G, Zhang J. Tuning the Electrical and Optical Properties of Dinuclear Ruthenium Complexes for Near Infrared Optical Sensing[J]. Org Lett, 2006,8(8):1697-1700. doi: 10.1021/ol060344f

    3. [3]

      Monk P M S, Mortimer R J, Rosseinsky D R. Electrochromism and Electrochromic Devices[M]. Cambridge University Press, 2007:395-410.

    4. [4]

      Pochorovski I, Diederich F. Development of Redox-Switchable Resorcin[4]arene Cavitands[J]. Acc Chem Res, 2014,47(7):2096-2105. doi: 10.1021/ar500104k

    5. [5]

      WANG Bin, WANG Xiaohong, LI Jiuming. Electrochromic Properties of Hybrid Mutilayer Film Based on Pressler Type Polyoxometalate P5W30, Positive Polyelectrolyte and Graphene Oxide[J]. Chinese J Appl Chem, 2017,34(2):233-241. doi: 10.11944/j.issn.1000-0518.2017.02.160125 

    6. [6]

      Gunbas G E, Durmus A, Toppare L. Could Green be Greener? Novel Donor-Acceptor-Type Electrochromic Polymers:Towards Excellent Neutral Green Materials with Exceptional Transmissive Oxidized States for Completion of RGB Color Space[J]. Adv Mater, 2008,20(4):691-695. doi: 10.1002/(ISSN)1521-4095

    7. [7]

      Zhang Y, Wang X, Zhang W. A Single-Molecule Multicolor Electrochromic Device Generated Through Medium Engineering[J]. Light-Sci Appl, 2015,4(2):249-257. doi: 10.1038/lsa.2015.22

    8. [8]

      Ji L, Dai Y, Yan S. A Fast Electrochromic Polymer Based on TEMPO Substituted Polytriphenylamine[J]. Sci Rep, 2016,6:30068-30075. doi: 10.1038/srep30068

    9. [9]

      Icli M, Pamuk M, Algi F. Donor-Acceptor Polymer Electrochromes with Tunable Colors and Performance[J]. Chem Mater, 2010,22(13)40344044.  

    10. [10]

      Shi P, Amb C M, Knott E P. Broadly Absorbing Black to Transmissive Switching Electrochromic Polymers[J]. Adv Mater, 2010,22(44):4949-4953. doi: 10.1002/adma.v22.44

    11. [11]

      Lv X, Li W, Ouyang M. Polymeric Electrochromic Materials with Donor-Acceptor Structure[J]. J Mater Chem C, 2017,5(1):12-28. doi: 10.1039/C6TC04002K

    12. [12]

      Amb C M, Beaujuge P M, Reynolds J R. Spray-Processable Blue-to-Highly Transmissive Switching Polymer Electrochromes via the Donor Acceptor Approach[J]. Adv Mater, 2010,22(6):724-728. doi: 10.1002/adma.v22:6

    13. [13]

      Liu X, Kong L, Zhang Y. Novel Donor-acceptor Type Electrochromic Polymers Based on[1, 2, 5] Thiadiazolo[3, 4-c]pyridine as the Acceptor Unit[J]. Int J Electrochem Sci, 2016,11(1):343-358.  

    14. [14]

      Patra A, Bendikov M, Chand S. Poly(3, 4-ethylenedioxyselenophene) and Its Derivatives:Novel Organic Electronic Materials[J]. Acc Chem Res, 2014,47(5):1465-1474. doi: 10.1021/ar4002284

    15. [15]

      Li W, Hendriks K H, Wienk M M. Diketopyrrolopyrrole Polymers for Organic Solar Cells[J]. Acc Chem Res, 2016,49(1):78-85. doi: 10.1021/acs.accounts.5b00334

    16. [16]

      Sekine C, Tsubata Y, Yamada T. Recent Progress of High Performance Polymer OLED and OPV Materials for Organic Printed Electronics[J]. Sci Technol Adv Mater, 2014,15(3)034203(15pp).  

    17. [17]

      Kerszulis J A, Bulloch R H, Teran N B. Relax:A Sterically Relaxed Donor-Acceptor Approach for Color Tuning in Broadly Absorbing, High Contrast Electrochromic Polymers[J]. Macromolecules, 2016,49(17):6350-6359. doi: 10.1021/acs.macromol.6b01114

    18. [18]

      Low J Z, Neo W T, Ye Q. Low Band-Gap Diketopyrrolopyrrole-Containing Polymers for Near Infrared Electrochromic and Photovoltaic Applications[J]. J Poly Sci Part A:Poly Chem, 2015,53(10):1287-1295. doi: 10.1002/pola.v53.10

    19. [19]

      Capan A, Veisi H, Goren A C. Concise Syntheses, Polymers, and Properties of 3-Arylthieno[3, 2-b]thiophenes[J]. Macromolecules, 2012,45(20):8228-8236. doi: 10.1021/ma301604e

    20. [20]

      Lemasson F, Berton N, Tittmann J. Polymer Library Comprising Fluorene and Carbazole Homo-and Copolymers for Selective Single-Walled Carbon Nanotubes Extraction[J]. Macromolecules, 2011,45(2):713-722.  

    21. [21]

      Li Y, Sun B, Sonar P. Solution Processable Poly(2, 5-dialkyl-2, 5-dihydro-3, 6-di-2-thienyl-pyrrolo[3, 4-c]pyrrole-1, 4-dione) for Ambipolar Organic Thin Film Transistors[J]. Org Electron, 2012,13(9):1606-1613. doi: 10.1016/j.orgel.2012.04.023

    22. [22]

      Tourillon G, Garnier G. Structural Effect on the Electrochemical Properties of Polythiophene and Derivatives[J]. J Electroanal Chem, 1984,161(1):51-58. doi: 10.1016/S0022-0728(84)80249-1

    23. [23]

      Sonar P, Williams L, Singh P. A Benzothiadiazole End Capped Donor Acceptor Based Small Molecule for Organic Electronics[J]. Phys Chem Chem Phys, 2013,15(40):17064-17069. doi: 10.1039/c3cp52929k

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    7. [7]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    8. [8]

      Lianghong Ye Junqing Ni Zhongyi Yan Zhanming Zhang Can Zhu Mo Sun . Chemical Fuel-Driven Non-Equilibrium Color Change. University Chemistry, 2025, 40(3): 349-354. doi: 10.12461/PKU.DXHX202406109

    9. [9]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    10. [10]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    11. [11]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    12. [12]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    13. [13]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    19. [19]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    20. [20]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

Metrics
  • PDF Downloads(1)
  • Abstract views(339)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return