Research Progress of Preparation of Nitrogen-doped Graphene and Its Application in Chemical Energy Storage
- Corresponding author: YANG Rong, yangrong@xaut.edu.cn
Citation:
SU Xiangxiang, YANG Rong, LI Lan, LI Runqiu, WANG Liqing, LEI Ying. Research Progress of Preparation of Nitrogen-doped Graphene and Its Application in Chemical Energy Storage[J]. Chinese Journal of Applied Chemistry,
;2018, 35(2): 137-146.
doi:
10.11944/j.issn.1000-0518.2018.02.170036
Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896
Son Y W, Cohen M L, Louie S G. Half-metallic Graphene Nanoribbons[J]. Nature, 2006,444(7117):347-349. doi: 10.1038/nature05180
Yang X J, Zheng A B, Wang X L. Graphene Nanosheet and Carbon Layer Co-decorated Li4Ti5O12 as High-performance Anode Material for Rechargeable Lithium-Ion Batteries[J]. Ceram Int, 2017,43(3):3252-3258. doi: 10.1016/j.ceramint.2016.11.154
YANG Rong, WANG Liqing, LV Mengni. Progress in Synthesis of Graphene and Graphene-based Materials by Microwave Method[J]. Chem Bull, 2016,79(6):503-508.
Min J H, Seo T H, Choi S B. Effect of p-GaN Hole Concentration on the Stabilization and Performance of a Graphene Current Spreading Layer in Near-ultraviolet Light-emitting Diodes[J]. Curr Appl Phys, 2016,16(10):1382-1387. doi: 10.1016/j.cap.2016.08.006
Park S, Shehzad M A, Khan M F. Effect of Grain Boundaries on Electrical Properties of Polycrystalline[J]. Carbon, 2017,112:142-148. doi: 10.1016/j.carbon.2016.11.010
Wu Z Q, Lu Y H, Xu W L. Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-emitting-diode by Ag Nano-particles[J]. Nano Energy, 2016,30:362-367. doi: 10.1016/j.nanoen.2016.10.028
Wang Q Q, Huang J B, Li G R. A Facile and Scalable Method to Prepare Carbon Nanotube-grafted-graphene for High Performance Li-S Battery[J]. J Power Sources, 2017,339:20-26. doi: 10.1016/j.jpowsour.2016.11.038
Hao J T, Shu D, Guo S T. Preparation of Three-dimensional Nitrogen-doped Graphene Layers by Gas Foaming Method and Its Electrochemical Capactive Behavior[J]. Electrochim Acta, 2016,193:293-301. doi: 10.1016/j.electacta.2016.02.048
HU Rongyan, JIA Kunpeng, CHEN Yang. Research Progress of Graphene Doping[J]. Micronanoelectron Technol, 2015,52(11):692-700.
Rao C N R, Gopalakrishnan K, Govindaraj A. Synthesis, Properties and Applications of Graphene Doped with Boron, Nitrogen and Other Elements[J]. Nano Today, 2014,9(3):324-343. doi: 10.1016/j.nantod.2014.04.010
Li S H, Yang S Y, Wang Y S. N-Doped Structures and Surface Functional Groups of Reduced Graphene Oxide and Their Effect on the Electrochemical Performance of Supercapacitor with Organic Electrolyte[J]. J Power Sources, 2015,278(4):218-229.
Tian G Y, Liu L, Meng Q G. Facile Synthesis of Laminated Graphene for Advanced Supercapacitor Electrode Material via Simultaneous Reduction and N-Doping[J]. J Power Sources, 2015,274:851-861. doi: 10.1016/j.jpowsour.2014.10.171
Wang D W, Min Y G, Yu Y H. A General Approach for Fabrication of Nitrogen-doped Graphene Sheets and Its Application in Supercapacitors[J]. Science, 2014,417(3):270-277.
Yang Y C, Shi W, Zhang R H. Electrochemical Exfoliation of Graphite into Nitrogen-doped Graphene in Glycine Solution and Its Energy Storage Properties[J]. Electrochim Acta, 2016,204:100-107. doi: 10.1016/j.electacta.2016.04.063
Liu J, Wang Z H, Zhu J F. Binder-free Nitrogen-doped Carbon Paper Electrodes Derived from Polypyrrole/Cellulose Composite for Li-O2 Batteries[J]. J Power Sources, 2016,306:559-566. doi: 10.1016/j.jpowsour.2015.12.074
Sui Y P, Zhu B, Zhang H R. Temperature-dependent Nitrogen Configuration of N-Doped Graphene by Chemical Vapor Deposition[J]. Carbon, 2015,81(1):814-820.
Bao J F, Kishi N, Soga T. Synthesis of Nitrogen-doped Graphene by the Thermal Chemical Vapor Deposition Method from a Single Liquid Precursor[J]. Mater Lett, 2014,117(1):199-203.
Kano E, Kalita G, Shinde S M. Grain Structures of Nitrogen-doped Graphene Synthesized by Solid Source-based Chemical Vapor Deposition[J]. Carbon, 2016,96:448-453. doi: 10.1016/j.carbon.2015.09.086
Deng D H, Pan X L, Yu L. Toward N-Doped Graphene via Solvothermal Synthesis[J]. Chem Mater, 2011,23(5):1188-1193. doi: 10.1021/cm102666r
Zhang H, Kuila T, Kim N H. Simultaneous Reduction, Exfoliation, and Nitrogen Doping of Graphene Oxide via a Hydrothermal Reaction for Energy Storage Electrode Materials[J]. Carbon, 2014,69(6):66-78.
Jeony H M, Lee J W, Shin W H. Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes[J]. Nano Lett, 2011,11(6):2472-2477. doi: 10.1021/nl2009058
Li N, Wang Z Y, Zhao K K. Large Scale Synthesis of N-Doped Multi-layered Graphene Sheets by Simple Arc-discharge Method[J]. Carbon, 2010,48(1):25-259. doi: 10.1016/j.carbon.2009.06.060
Guo B D, Liu Q, Chen E D. Controllable N-Doping of Graphene[J]. Nano Lett, 2010,12(10):4975-4980.
Lin Z Y, Waller G, Liu Y. Facile Synthesis of Nitrogen-doped Graphene via Pyrolysis of Graphene Oxide and Urea, and Its Electrocatalytic Activity Toward the Oxygen-reduction Reaction[J]. Adv Energy Mater, 2012,7(2):884-888.
Sari F N I, Lin H M, Ting J M. Surface Modified Catalytically Grown Carbon Nanofibers/MnO2 Composites for Use in Supercapacitor[J]. Thin Solid Films, 2016,620:54-63. doi: 10.1016/j.tsf.2016.07.085
Zheng B J, Chen Y F, Li P J. Ultrafast Ammonia-driven, Microwave-assisted Synthesis of Nitrogen-doped Graphene Quantum Dots and Their Optical Properties[J]. J Nanophoton, 2016,6(1):259-267.
Chang Y Z, Han G Y, Yuan J P. Using Hydroxylamine as a Reducer to Prepare N-Doped Garphene Hydrogels Used in High-performance Energy Storage[J]. J Power Sources, 2013,238(28):492-500.
Jiang Z J, Jiang Z Q, Chen W H. The Role of Holes in Improving the Performance of Nitrogen-doped Holey Graphene as an Active Electrode Material for Supercapacitor and Oxygen Reduction Reaction[J]. J Power Sources, 2014,251:55-65. doi: 10.1016/j.jpowsour.2013.11.031
GUO Huilin, SU Peng, PENG San. Preparation of Nitrogen-Doped Graphene and Its Supercapacitive Properties[J]. Acta Phys-Chim Sin, 2012,28(11):2745-2753. doi: 10.3866/PKU.WHXB201208221
Liao Y Q, Huang Y L, Shu D. Three-dimensional Nitrogen-doped Graphene Hydrogels Prepared via Hydrothermal Synthesis as High-performance Supercapacitor Materials[J]. Electrochim Acta, 2016,194:136-142. doi: 10.1016/j.electacta.2016.02.067
ZHONG Wenbin, TAN Xiyi. Synthesis of 3D N-Doped Graphene Networks with High Electrochemical Performance[J]. J Hunan Univ(Nat Sci), 2016,43(6):53-57.
Jiang M, Xing L B, Zhang J L. Carbohydrazide-dependent Reductant for Preparing Nitrogen-doped Graphene Hydrogels as Electrode Materials in Supercapacitor[J]. Science, 2016,368:388-394.
ZHONG Qineng, LI Zelong, LI Xinlu. Preparation and Supercapacitor Performance of a Flexible Nitrogen-doped Graphene Film[J]. Surf Technol, 2015,44(1):51-63.
Jiang B J, Tian C G, Wang L. Highly Concentrated, Stable Nitrogen-doped Graphene for Supercapacitors:Simultaneous Doping and Reduction[J]. Science, 2012,258(8):3438-3443.
Wang B H, Qin Y, Tan W H. Smartly Designed 3D N-Doped Mesoporous Graphene for High-performance Supercapacitor Electrodes[J]. Electrochim Acta, 2017,241:1-9. doi: 10.1016/j.electacta.2017.04.120
Zhao X, Dong H, Xiao Y. Three-dimensional Nitrogen-doped Graphene as Binder-free Electrode Materials for Supercapacitors with High Volumetric Capacitance and the Synergistic Effect Between Nitrogen Configuration and Supercapacitive Performance[J]. Electrochim Acta, 2016,218:32-40. doi: 10.1016/j.electacta.2016.09.096
Du X S, Liu H Y, Mai Y W. Facile Chemical Synthesis of Nitrogen-doped Graphene Sheets and their Electrochemical Capacitance[J]. J Power Sources, 2013,241(241):460-466.
Lee J W, Ko J M, Kim J D. Hydrothermal Preparation of Nitrogen-doped Graphene Sheets via Hexamethylenetetramine for Application as Supercapacitor Electrodes[J]. Electrochim Acta, 2012,85(1):459-466.
Cai D D, Wang S Q, Lian P C. Superhigh Capacity and Rate Capability of High-level Nitrogen-doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries[J]. Electrochim Acta, 2013,90(5):492-497.
GAO Yunlei, ZHAO Donglin, BAI Lizhong. Electrochemical Performance of Nitrogen-doped Graphene as Anode Material for Lithium Ion Batteries[J]. China Sciencepaper, 2012,7(6):413-441.
Liu X W, Wu Y, Yang Z Z. Nitrogen-doped 3D Macroporous Graphene Frameworks as Anode for High Performance Lithium-Ion Batteries[J]. J Power Sources, 2015,293:799-805. doi: 10.1016/j.jpowsour.2015.05.074
Jiang Z Q, Jiang Z J, Tian X N. Nitrogen-doped Graphene Hollow Microspheres as an Efficient Electrode Material for Lithium Ion Batteries[J]. Electrochim Acta, 2014,146:455-463. doi: 10.1016/j.electacta.2014.09.069
Yang C N, Qing Y Q, An K. Facile Synthesis of the N-Doped Graphene/Nickel Oxide with Enhanced Electrochemical Performance for Rechargeable Lithium-Ion Batteries[J]. Mater Chem Phys, 2017,195:149-156. doi: 10.1016/j.matchemphys.2017.04.029
Wang G X, Su D W, Kim H S. A Study of PtxCoy Alloy Nanoparticles as Cathode Catalysts for Lithium-Air Batteries with Improved Catalytic Activity[J]. J Power Sources, 2013,244(4):488-493.
Wang J J, Li Y J, Sun X L. Challenges and Opportunities of Nanostructured Materials for Aprotic Rechargeable Lithium-Air Batteries[J]. Nano Energy, 2013,2(4):443-467. doi: 10.1016/j.nanoen.2012.11.014
Li Y L, Wang J J, Li X F. Nitrogen-doped Graphene Nanosheets as Cathode Materials with Excellent Electrocatalytic Activity for High Capacity Lithium-oxygen Batteries[J]. Electrochem Commun, 2012,18(1):12-15.
Leng L M, Li J, Zeng X Y. Enhancing the Cyclability of Li-O2 Batteries using PdM Alloy Nanoparticles Anchored on Nitrogen-doped Reduced Graphene as the Cathode Catalyst[J]. J Power Sources, 2017,337:173-179. doi: 10.1016/j.jpowsour.2016.10.089
Williford R E, Zhang J G. Air Electrode Design for Sustained High Power Operation of Li/Air Batteries[J]. J Power Sources, 2009,194(2):1164-1170. doi: 10.1016/j.jpowsour.2009.06.005
Wang M Y, Huang Y, Chen X F. Synthesis of Nitrogen and Sulfur Co-doped Graphene Supported Hollow ZnFe2O4 Nanosphere Composites for Application in Lithium-Ion Batteries[J]. J Alloys Compd, 2017,691:407-415. doi: 10.1016/j.jallcom.2016.08.285
Xiang M W, Wang Y, Wu J H. Natural Silk Cocoon Derived Nitrogen-doped Porous Carbon Nanosheets for High Performance Lithium-Sulfur Batteries[J]. Electrochim Acta, 2017,227:7-16. doi: 10.1016/j.electacta.2016.11.139
Li L, Zhou G M, Yin L C. Stabilizing Sulfur Cathodes Using Nitrogen-doped Graphene as a Chemical Immobilizer for Li-S Batteries[J]. Carbon, 2016,108:120-126. doi: 10.1016/j.carbon.2016.07.008
Yin L C, Liang J, Zhou G M. Understanding the Interactions Between Lithium Polysulfides and N-Doped Graphene Using Density Functional Theory Calculations[J]. Nano Energy, 2016,25:203-210.
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
Xueyu Lin , Ruiqi Wang , Wujie Dong , Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221