Citation: SU Xiangxiang, YANG Rong, LI Lan, LI Runqiu, WANG Liqing, LEI Ying. Research Progress of Preparation of Nitrogen-doped Graphene and Its Application in Chemical Energy Storage[J]. Chinese Journal of Applied Chemistry, ;2018, 35(2): 137-146. doi: 10.11944/j.issn.1000-0518.2018.02.170036 shu

Research Progress of Preparation of Nitrogen-doped Graphene and Its Application in Chemical Energy Storage

  • Corresponding author: YANG Rong, yangrong@xaut.edu.cn
  • Received Date: 16 February 2017
    Revised Date: 19 May 2017
    Accepted Date: 27 June 2017

    Fund Project: the International Science Technology Cooperation Program of China 2015DFR50350the Innovation and Entrepreneurship Training Program of the Provincial College Students in 2016 1168Supported by the International Science Technology Cooperation Program of China(No.2015DFR50350), the National Natural Science Foundation of China(No.21503166), the Innovation and Entrepreneurship Training Program of the Provincial College Students in 2016(No.1168), the Science and Technology Project of Shaanxi Province(No.2017GY-160), the Innovation Project of Xi'an University of Technology(No.2015CX011)the National Natural Science Foundation of China 21503166the Innovation Project of Xi'an University of Technology 2015CX011the Science and Technology Project of Shaanxi Province 2017GY-160

Figures(2)

  • The unique two-dimensional spatial structure gives graphene excellent chemical and physical properties and huge specific surface area, which makes graphene a very promising material for energy storage applications and a research hotspot recently. Irreversible agglomeration, smooth surface and inertness result in the dramatic reduction of the available active surface of graphene, which limits its blending with other materials. In recent years, doping graphene with nitrogen reforms its electronic structure and increases surface active sites, promoting its electrochemical performance in the field of energy storage. This paper reviews the current status of nitrogen-doped graphene synthesis and recent progress in the use of nitrogen-doped graphene in chemical energy storage, including supercapacitors, Li-ion batteries, Li-air batteries and Li-S batteries. Finally, key issues related to preparations and applications of nitrogen-doped graphene are briefly discussed as well, and the development prospect of nitrogen-doped graphene is prospected as well.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    2. [2]

      Son Y W, Cohen M L, Louie S G. Half-metallic Graphene Nanoribbons[J]. Nature, 2006,444(7117):347-349. doi: 10.1038/nature05180

    3. [3]

      Yang X J, Zheng A B, Wang X L. Graphene Nanosheet and Carbon Layer Co-decorated Li4Ti5O12 as High-performance Anode Material for Rechargeable Lithium-Ion Batteries[J]. Ceram Int, 2017,43(3):3252-3258. doi: 10.1016/j.ceramint.2016.11.154

    4. [4]

      YANG Rong, WANG Liqing, LV Mengni. Progress in Synthesis of Graphene and Graphene-based Materials by Microwave Method[J]. Chem Bull, 2016,79(6):503-508.  

    5. [5]

      Min J H, Seo T H, Choi S B. Effect of p-GaN Hole Concentration on the Stabilization and Performance of a Graphene Current Spreading Layer in Near-ultraviolet Light-emitting Diodes[J]. Curr Appl Phys, 2016,16(10):1382-1387. doi: 10.1016/j.cap.2016.08.006

    6. [6]

      Park S, Shehzad M A, Khan M F. Effect of Grain Boundaries on Electrical Properties of Polycrystalline[J]. Carbon, 2017,112:142-148. doi: 10.1016/j.carbon.2016.11.010

    7. [7]

      Wu Z Q, Lu Y H, Xu W L. Surface Plasmon Enhanced Graphene/p-GaN Heterostructure Light-emitting-diode by Ag Nano-particles[J]. Nano Energy, 2016,30:362-367. doi: 10.1016/j.nanoen.2016.10.028

    8. [8]

      Wang Q Q, Huang J B, Li G R. A Facile and Scalable Method to Prepare Carbon Nanotube-grafted-graphene for High Performance Li-S Battery[J]. J Power Sources, 2017,339:20-26. doi: 10.1016/j.jpowsour.2016.11.038

    9. [9]

      Hao J T, Shu D, Guo S T. Preparation of Three-dimensional Nitrogen-doped Graphene Layers by Gas Foaming Method and Its Electrochemical Capactive Behavior[J]. Electrochim Acta, 2016,193:293-301. doi: 10.1016/j.electacta.2016.02.048

    10. [10]

      HU Rongyan, JIA Kunpeng, CHEN Yang. Research Progress of Graphene Doping[J]. Micronanoelectron Technol, 2015,52(11):692-700.  

    11. [11]

      Rao C N R, Gopalakrishnan K, Govindaraj A. Synthesis, Properties and Applications of Graphene Doped with Boron, Nitrogen and Other Elements[J]. Nano Today, 2014,9(3):324-343. doi: 10.1016/j.nantod.2014.04.010

    12. [12]

      Li S H, Yang S Y, Wang Y S. N-Doped Structures and Surface Functional Groups of Reduced Graphene Oxide and Their Effect on the Electrochemical Performance of Supercapacitor with Organic Electrolyte[J]. J Power Sources, 2015,278(4):218-229.  

    13. [13]

      Tian G Y, Liu L, Meng Q G. Facile Synthesis of Laminated Graphene for Advanced Supercapacitor Electrode Material via Simultaneous Reduction and N-Doping[J]. J Power Sources, 2015,274:851-861. doi: 10.1016/j.jpowsour.2014.10.171

    14. [14]

      Wang D W, Min Y G, Yu Y H. A General Approach for Fabrication of Nitrogen-doped Graphene Sheets and Its Application in Supercapacitors[J]. Science, 2014,417(3):270-277.  

    15. [15]

      Yang Y C, Shi W, Zhang R H. Electrochemical Exfoliation of Graphite into Nitrogen-doped Graphene in Glycine Solution and Its Energy Storage Properties[J]. Electrochim Acta, 2016,204:100-107. doi: 10.1016/j.electacta.2016.04.063

    16. [16]

      Liu J, Wang Z H, Zhu J F. Binder-free Nitrogen-doped Carbon Paper Electrodes Derived from Polypyrrole/Cellulose Composite for Li-O2 Batteries[J]. J Power Sources, 2016,306:559-566. doi: 10.1016/j.jpowsour.2015.12.074

    17. [17]

      Sui Y P, Zhu B, Zhang H R. Temperature-dependent Nitrogen Configuration of N-Doped Graphene by Chemical Vapor Deposition[J]. Carbon, 2015,81(1):814-820.  

    18. [18]

      Bao J F, Kishi N, Soga T. Synthesis of Nitrogen-doped Graphene by the Thermal Chemical Vapor Deposition Method from a Single Liquid Precursor[J]. Mater Lett, 2014,117(1):199-203.  

    19. [19]

      Kano E, Kalita G, Shinde S M. Grain Structures of Nitrogen-doped Graphene Synthesized by Solid Source-based Chemical Vapor Deposition[J]. Carbon, 2016,96:448-453. doi: 10.1016/j.carbon.2015.09.086

    20. [20]

      Deng D H, Pan X L, Yu L. Toward N-Doped Graphene via Solvothermal Synthesis[J]. Chem Mater, 2011,23(5):1188-1193. doi: 10.1021/cm102666r

    21. [21]

      Zhang H, Kuila T, Kim N H. Simultaneous Reduction, Exfoliation, and Nitrogen Doping of Graphene Oxide via a Hydrothermal Reaction for Energy Storage Electrode Materials[J]. Carbon, 2014,69(6):66-78.  

    22. [22]

      Jeony H M, Lee J W, Shin W H. Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes[J]. Nano Lett, 2011,11(6):2472-2477. doi: 10.1021/nl2009058

    23. [23]

      Li N, Wang Z Y, Zhao K K. Large Scale Synthesis of N-Doped Multi-layered Graphene Sheets by Simple Arc-discharge Method[J]. Carbon, 2010,48(1):25-259. doi: 10.1016/j.carbon.2009.06.060

    24. [24]

      Guo B D, Liu Q, Chen E D. Controllable N-Doping of Graphene[J]. Nano Lett, 2010,12(10):4975-4980.  

    25. [25]

      Lin Z Y, Waller G, Liu Y. Facile Synthesis of Nitrogen-doped Graphene via Pyrolysis of Graphene Oxide and Urea, and Its Electrocatalytic Activity Toward the Oxygen-reduction Reaction[J]. Adv Energy Mater, 2012,7(2):884-888.  

    26. [26]

      Sari F N I, Lin H M, Ting J M. Surface Modified Catalytically Grown Carbon Nanofibers/MnO2 Composites for Use in Supercapacitor[J]. Thin Solid Films, 2016,620:54-63. doi: 10.1016/j.tsf.2016.07.085

    27. [27]

      Zheng B J, Chen Y F, Li P J. Ultrafast Ammonia-driven, Microwave-assisted Synthesis of Nitrogen-doped Graphene Quantum Dots and Their Optical Properties[J]. J Nanophoton, 2016,6(1):259-267.  

    28. [28]

      Chang Y Z, Han G Y, Yuan J P. Using Hydroxylamine as a Reducer to Prepare N-Doped Garphene Hydrogels Used in High-performance Energy Storage[J]. J Power Sources, 2013,238(28):492-500.  

    29. [29]

      Jiang Z J, Jiang Z Q, Chen W H. The Role of Holes in Improving the Performance of Nitrogen-doped Holey Graphene as an Active Electrode Material for Supercapacitor and Oxygen Reduction Reaction[J]. J Power Sources, 2014,251:55-65. doi: 10.1016/j.jpowsour.2013.11.031

    30. [30]

      GUO Huilin, SU Peng, PENG San. Preparation of Nitrogen-Doped Graphene and Its Supercapacitive Properties[J]. Acta Phys-Chim Sin, 2012,28(11):2745-2753. doi: 10.3866/PKU.WHXB201208221

    31. [31]

      Liao Y Q, Huang Y L, Shu D. Three-dimensional Nitrogen-doped Graphene Hydrogels Prepared via Hydrothermal Synthesis as High-performance Supercapacitor Materials[J]. Electrochim Acta, 2016,194:136-142. doi: 10.1016/j.electacta.2016.02.067

    32. [32]

      ZHONG Wenbin, TAN Xiyi. Synthesis of 3D N-Doped Graphene Networks with High Electrochemical Performance[J]. J Hunan Univ(Nat Sci), 2016,43(6):53-57.  

    33. [33]

      Jiang M, Xing L B, Zhang J L. Carbohydrazide-dependent Reductant for Preparing Nitrogen-doped Graphene Hydrogels as Electrode Materials in Supercapacitor[J]. Science, 2016,368:388-394.  

    34. [34]

      ZHONG Qineng, LI Zelong, LI Xinlu. Preparation and Supercapacitor Performance of a Flexible Nitrogen-doped Graphene Film[J]. Surf Technol, 2015,44(1):51-63.  

    35. [35]

      Jiang B J, Tian C G, Wang L. Highly Concentrated, Stable Nitrogen-doped Graphene for Supercapacitors:Simultaneous Doping and Reduction[J]. Science, 2012,258(8):3438-3443.  

    36. [36]

      Wang B H, Qin Y, Tan W H. Smartly Designed 3D N-Doped Mesoporous Graphene for High-performance Supercapacitor Electrodes[J]. Electrochim Acta, 2017,241:1-9. doi: 10.1016/j.electacta.2017.04.120

    37. [37]

      Zhao X, Dong H, Xiao Y. Three-dimensional Nitrogen-doped Graphene as Binder-free Electrode Materials for Supercapacitors with High Volumetric Capacitance and the Synergistic Effect Between Nitrogen Configuration and Supercapacitive Performance[J]. Electrochim Acta, 2016,218:32-40. doi: 10.1016/j.electacta.2016.09.096

    38. [38]

      Du X S, Liu H Y, Mai Y W. Facile Chemical Synthesis of Nitrogen-doped Graphene Sheets and their Electrochemical Capacitance[J]. J Power Sources, 2013,241(241):460-466.  

    39. [39]

      Lee J W, Ko J M, Kim J D. Hydrothermal Preparation of Nitrogen-doped Graphene Sheets via Hexamethylenetetramine for Application as Supercapacitor Electrodes[J]. Electrochim Acta, 2012,85(1):459-466.  

    40. [40]

      Cai D D, Wang S Q, Lian P C. Superhigh Capacity and Rate Capability of High-level Nitrogen-doped Graphene Sheets as Anode Materials for Lithium-Ion Batteries[J]. Electrochim Acta, 2013,90(5):492-497.  

    41. [41]

      GAO Yunlei, ZHAO Donglin, BAI Lizhong. Electrochemical Performance of Nitrogen-doped Graphene as Anode Material for Lithium Ion Batteries[J]. China Sciencepaper, 2012,7(6):413-441.  

    42. [42]

      Liu X W, Wu Y, Yang Z Z. Nitrogen-doped 3D Macroporous Graphene Frameworks as Anode for High Performance Lithium-Ion Batteries[J]. J Power Sources, 2015,293:799-805. doi: 10.1016/j.jpowsour.2015.05.074

    43. [43]

      Jiang Z Q, Jiang Z J, Tian X N. Nitrogen-doped Graphene Hollow Microspheres as an Efficient Electrode Material for Lithium Ion Batteries[J]. Electrochim Acta, 2014,146:455-463. doi: 10.1016/j.electacta.2014.09.069

    44. [44]

      Yang C N, Qing Y Q, An K. Facile Synthesis of the N-Doped Graphene/Nickel Oxide with Enhanced Electrochemical Performance for Rechargeable Lithium-Ion Batteries[J]. Mater Chem Phys, 2017,195:149-156. doi: 10.1016/j.matchemphys.2017.04.029

    45. [45]

      Wang G X, Su D W, Kim H S. A Study of PtxCoy Alloy Nanoparticles as Cathode Catalysts for Lithium-Air Batteries with Improved Catalytic Activity[J]. J Power Sources, 2013,244(4):488-493.  

    46. [46]

      Wang J J, Li Y J, Sun X L. Challenges and Opportunities of Nanostructured Materials for Aprotic Rechargeable Lithium-Air Batteries[J]. Nano Energy, 2013,2(4):443-467. doi: 10.1016/j.nanoen.2012.11.014

    47. [47]

      Li Y L, Wang J J, Li X F. Nitrogen-doped Graphene Nanosheets as Cathode Materials with Excellent Electrocatalytic Activity for High Capacity Lithium-oxygen Batteries[J]. Electrochem Commun, 2012,18(1):12-15.  

    48. [48]

      Leng L M, Li J, Zeng X Y. Enhancing the Cyclability of Li-O2 Batteries using PdM Alloy Nanoparticles Anchored on Nitrogen-doped Reduced Graphene as the Cathode Catalyst[J]. J Power Sources, 2017,337:173-179. doi: 10.1016/j.jpowsour.2016.10.089

    49. [49]

      Williford R E, Zhang J G. Air Electrode Design for Sustained High Power Operation of Li/Air Batteries[J]. J Power Sources, 2009,194(2):1164-1170. doi: 10.1016/j.jpowsour.2009.06.005

    50. [50]

      Wang M Y, Huang Y, Chen X F. Synthesis of Nitrogen and Sulfur Co-doped Graphene Supported Hollow ZnFe2O4 Nanosphere Composites for Application in Lithium-Ion Batteries[J]. J Alloys Compd, 2017,691:407-415. doi: 10.1016/j.jallcom.2016.08.285

    51. [51]

      Xiang M W, Wang Y, Wu J H. Natural Silk Cocoon Derived Nitrogen-doped Porous Carbon Nanosheets for High Performance Lithium-Sulfur Batteries[J]. Electrochim Acta, 2017,227:7-16. doi: 10.1016/j.electacta.2016.11.139

    52. [52]

      Li L, Zhou G M, Yin L C. Stabilizing Sulfur Cathodes Using Nitrogen-doped Graphene as a Chemical Immobilizer for Li-S Batteries[J]. Carbon, 2016,108:120-126. doi: 10.1016/j.carbon.2016.07.008

    53. [53]

      Yin L C, Liang J, Zhou G M. Understanding the Interactions Between Lithium Polysulfides and N-Doped Graphene Using Density Functional Theory Calculations[J]. Nano Energy, 2016,25:203-210.  

  • 加载中
    1. [1]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . 二维材料基超级电容器的容量与倍率性能提升策略. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    15. [15]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    16. [16]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

Metrics
  • PDF Downloads(3)
  • Abstract views(1669)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return