Citation: WANG Dejia, XU Yongqian, SUN Shiguo, LI Hongjuan. Advanced in Fluorescent Probes Based on Excited State Intramolecular Proton Transfer[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 1-20. doi: 10.11944/j.issn.1000-0518.2018.01.170328 shu

Advanced in Fluorescent Probes Based on Excited State Intramolecular Proton Transfer

  • Corresponding author: XU Yongqian, xuyq@nwsuaf.edu.cn
  • Received Date: 11 September 2017
    Revised Date: 26 September 2017
    Accepted Date: 28 September 2017

    Fund Project: the National Natural Science Foundation of China 21476185Supported by the National Natural Science Foundation of China(No. 21676218, No.21476185, 21472016, No.21272030)the National Natural Science Foundation of China 21676218the National Natural Science Foundation of China 21272030the National Natural Science Foundation of China 21472016

Figures(27)

  • Fluorescent probes are gaining more and more attention because of their high selectivity, sensitivity, fast response, simple operation and low detection limit. Compounds based on excited state intramolecular proton transfer(ESIPT) have special excited state photophysical properties, such as high fluorescence quantum yield and large Stokes shift. For fluorescent molecules, the larger Stokes shift can reduce the interference caused by self-absorption and internal filtration, and enhance light-fastness of the molecules and facilitate the emitting of fluorescence. In this review, we summarized these ESIPT fluorescent probes from the classification of targets. The targets for detection were divided into ions(including metal cations and anions), neutral small molecules and biological macromolecules. The existing problems and application prospects of fluorescent molecules based on ESIPT were commented.
  • 加载中
    1. [1]

      Lee M H, Kim J S, Sessler J L. Small Molecule-based Ratiometric Fluorescence Probes for Cations, Anions, and Biomolecules[J]. Chem Soc Rev, 2015,44(13):4185-4191. doi: 10.1039/C4CS00280F

    2. [2]

      Berezin M Y, Achilefu S. Fluorescence Lifetime Measurements and Biological Imaging[J]. Chem Rev, 2010,110(5):2641-2684. doi: 10.1021/cr900343z

    3. [3]

      Wu J S, Liu W M, Ge J C. New Sensing Mechanisms for Design of Fluorescent Chemosensors Emerging in Recent Years[J]. Chem Soc Rev, 2011,40(7):3483-3495. doi: 10.1039/c0cs00224k

    4. [4]

      Kwon J E, Park S Y. Advanced Organic Optoelectronic Materials:Harnessing Excited-State Intramolecular Proton Transfer(ESIPT) Process[J]. Adv Mater, 2011,23(32):3615-3642. doi: 10.1002/adma.v23.32

    5. [5]

      Hsieh C C, Jiang C M, Chou P T. Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction[J]. Acc Chem Res, 2010,43(10):1364-1374. doi: 10.1021/ar1000499

    6. [6]

      Tang K C, Chang M J, Lin T Y. Fine Tuning the Energetics of Excited-State Intramolecular Proton Transfer(ESIPT):White Light Generation in a Single ESIPT System[J]. J Am Chem Soc, 2011,133(44):17738-17745. doi: 10.1021/ja2062693

    7. [7]

      Luxami V, Kumar S. Molecular Half-subtractor Based on 3, 3'-Bis(1H-benzimidazolyl-2-yl)[1, 1']binaphthalenyl-2, 2'-diol[J]. New J Chem, 2008,32(12):2074-2079. doi: 10.1039/b805558k

    8. [8]

      HU Rui, GUO Xudong, YANG Guoqiang. Investigation on the Property of the ESIPT Compounds and Its Application as Fluorescence Chemical Sensor[J]. Imag Sci Photochem, 2013,31(5):335-348. doi: 10.7517/j.issn.1674-0475.2013.05.335

    9. [9]

      Wang J F, Li Y B, Patel N G. A Single Molecular Probe for Multi-analyte(Cr3+, Al3+ and Fe3+) Detection in Aqueous Medium and Its Biological Application[J]. Chem Commun, 2014,50(82):12258-12261. doi: 10.1039/C4CC04731A

    10. [10]

      Chu Q H, Medvetz D A, Pang Y. A Polymeric Colorimetric Sensor with Excited-State Intramolecular Proton Transfer for Anionic Species[J]. Chem Mater, 2007,19(26):6421-6429. doi: 10.1021/cm0713982

    11. [11]

      Ma J, Zhao J Z, Yang P. New Excited State Intramolecular Proton Transfer(ESIPT) Dyes Based on Naphthalimide and Observation of Long-lived Triplet Excited States[J]. Chem Commun, 2012,48(78):9720-9722. doi: 10.1039/c2cc35210a

    12. [12]

      Yang P, Zhao J Z, Wu W H. Accessing the Long-lived Triplet Excited States in Bodipy-conjugated 2-(2-Hydroxyphenyl) Benzothiazole/Benzoxazoles and Applications as Organic Triplet Photosensitizers for Photooxidations[J]. J Org Chem, 2012,77(14):6166-6178. doi: 10.1021/jo300943t

    13. [13]

      Kim T I, Kang H J, Han G. A Highly Selective Fluorescent ESIPT Probe for the Dual Specificity Phosphatase MKP-6[J]. Chem Commun, 2009,39:5895-5897.

    14. [14]

      Hu R, Feng J, Hu D H. A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes[J]. Angew Chem Int Ed, 2010,49(29):4915-4918. doi: 10.1002/anie.v49:29

    15. [15]

      Li X, Tao R R, Hong L J. Visualizing Peroxynitrite Fluxes in Endothelial Cells Reveals the Dynamic Progression of Brain Vascular Injury[J]. J Am Chem Soc, 2015,137(38):12296-12303. doi: 10.1021/jacs.5b06865

    16. [16]

      Sinha S, Chowdhury B, Ghosh P. A Highly Sensitive ESIPT-based Ratiometric Fluorescence Sensor for Selective Detection of Al3+[J]. Inorg Chem, 2016,55(18):9212-9220. doi: 10.1021/acs.inorgchem.6b01170

    17. [17]

      Tang L J, Shi J Z, Huang Z L. An ESIPT-based Fluorescent Probe for Selective Detection of Homocysteine and Its Application in Live-Cell Imaging[J]. Tetrahedron Lett, 2016,57(47):5227-5231. doi: 10.1016/j.tetlet.2016.10.034

    18. [18]

      Klymchenko A S, Shvadchak V V, Yushchenko D A. Excited-State Intramolecular Proton Transfer Distinguishes Microenvironments in Singleand Double-stranded DNA[J]. J Phys Chem B, 2008,112(38):12050-12055. doi: 10.1021/jp8058068

    19. [19]

      Dziuba D, Postupalenko V Y, Spadafora M. A Universal Nucleoside with Strong Two-band Switchable Fluorescence and Sensitivity to the Environment for Investigating DNA Interactions[J]. J Am Chem Soc, 2012,134(24):10209-10213. doi: 10.1021/ja3030388

    20. [20]

      Kenfack C A, Klymchenko A S, Duportail G. Ab Initio Study of the Solvent H-Bonding Effect on ESIPT Reaction and Electronic Transitions of 3-Hydroxychromone Derivatives[J]. Phys Chem Chem Phys, 2012,14(25):8910-8918. doi: 10.1039/c2cp40869d

    21. [21]

      Paul B K, Guchhait N. 1-Hydroxy-2-naphthaldehyde:A Prospective Excited-State Intramolecular Proton Transfer(ESIPT) Probe with Multi-faceted Applications[J]. J Lumin, 2012,132(8):2194-2208. doi: 10.1016/j.jlumin.2012.03.036

    22. [22]

      Hadjoudis E, Mavridis I M. Photochromism and Thermochromism of Schiff Bases in the Solid State:Structural Aspects[J]. Chem Soc Rev, 2004,33(9):579-88.  

    23. [23]

      Han D Y, Kim J M, Kim J H. ESIPT-based Anthraquinonylcalix[4] crown Chemosensor for In3+[J]. Tetrahedron Lett, 2010,51(15):1947-1951. doi: 10.1016/j.tetlet.2010.02.006

    24. [24]

      Schmidtke S J, Underwood D F, Blank D A. Following the Solvent Directly During Ultrafast Excited State Proton Transfer[J]. J Am Chem Soc, 2004,126(28):8620-8621. doi: 10.1021/ja048639g

    25. [25]

      Chien T C, Dias L G, Arantes G M. 1-(2-Quinolyl)-2-naphthol:A New Intra-Intermolecular Photoacid Photobase Molecule[J]. J Photochem Photobiol A, 2008,194(1):37-48. doi: 10.1016/j.jphotochem.2007.07.012

    26. [26]

      SakaiK I, Takahashi S, Kobayashi A. Excited State Intramolecular Proton Transfer(ESIPT) in Six-coordinated Zinc(Ⅱ)-Quinoxaline Complexes with Ligand Hydrogen Bonds:Their Fluorescent Properties Sensitive to Axial Positions[J]. Dalton Trans, 2010,39(8):1989-1995. doi: 10.1039/b919613g

    27. [27]

      ZHANG Peng, ZHANG Youming, LIN Qi. Principle and the Research Progress of Fluorescent Chemosensors for Cations Recognition[J]. Chinese J Org Chem, 2014,37(7):1300-1321.  

    28. [28]

      Gao M, Yu F B, Lv C J. Fluorescent Chemical Probes for Accurate Tumor Diagnosis and Targeting Therapy[J]. Chem Soc Rev, 2017,46(8):2237-2271. doi: 10.1039/C6CS00908E

    29. [29]

      Sinkeldam R W, Greco N J, Tor Y. Fluorescent Analogs of Biomolecular Building Blocks:Design, Properties, and Applications[J]. Chem Rev, 2010,110(5):2579-2619. doi: 10.1021/cr900301e

    30. [30]

      Xu, PangY. Zn2+-Triggered Excited-State Intramolecular Proton Transfer:A Sensitive Probe with Near-infrared Emission from Bis(benzoxazole) Derivative[J]. Dalton Trans, 2011,40(7):1503-1509. doi: 10.1039/c0dt01376e

    31. [31]

      Huang L Y, Gu B, Su W. Proton Donor Modulating ESIPT-based Fluorescent Probes for Highly Sensitive and Selective Detection of Cu2+[J]. RSC Adv, 2015,5(93):76296-76301. doi: 10.1039/C5RA14443D

    32. [32]

      Chen X Q, Pradhan T H, Wang F. Fluorescent Chemosensors Based on Spiroring-opening of Xanthenes and Related Derivatives[J]. Chem Rev, 2012,112(3):1910-1956. doi: 10.1021/cr200201z

    33. [33]

      Xu Y Q, Xiao L L, Zhang Y F. Substituent Effect on Fluorophores Instead of Ionophores:Its Implication in Highly Selective Fluorescent Probes for Zn2+ over Cd2+[J]. RSC Adv, 2014,4(10):4827-4830. doi: 10.1039/c3ra46468g

    34. [34]

      Xu Y Q, Xiao L L, Sun S G. Switchable and Selective Detection of Zn2+ or Cd2+ in Living Cells Based on 3'-O-substituted Arrangement of Benzoxazole-derived Fluorescent Probes[J]. Chem Commun, 2014,50(56):7514-7516. doi: 10.1039/C4CC02335H

    35. [35]

      Gale P A, Caltagirone C. Anion Sensing by Small Molecules and Molecular Ensembles[J]. Chem Soc Rev, 2015,44(13):4212-4227. doi: 10.1039/C4CS00179F

    36. [36]

      Ashton T D, Jolliffe K A, Pfeffer F M. Luminescent Probes for the Bioimaging of Small Anionic Species in Vitro and in Vivo[J]. Chem Soc Rev, 2015,44(14):4547-4595. doi: 10.1039/C4CS00372A

    37. [37]

      Wu Y K, Peng X J, Fan J L. Fluorescence Sensing of Anions Based on Inhibition of Excited-State Intramolecular Proton Transfer[J]. J Org Chem, 2007,72(1):62-70. doi: 10.1021/jo061634c

    38. [38]

      Goswami S, Manna A, Paul S. Resonance-assisted Hydrogen Bonding Induced Nucleophilic Addition to Hamper ESIPT:Ratiometric Detection of Cyanide in Aqueous Media[J]. Chem Commun, 2013,49(28):2912-2914. doi: 10.1039/c3cc39256b

    39. [39]

      Porel M, Ramalingam V, Domaradzki M E. Chloride Sensing via Suppression of Excited State Intramolecular Proton Transfer in Squaramides[J]. Chem Commun, 2013,49(16):1633-1635. doi: 10.1039/c3cc38767d

    40. [40]

      Chen W H, Xing Y, Pang Y. A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-on in Water[J]. Org Lett, 2011,13(6):1362-1365. doi: 10.1021/ol200054w

    41. [41]

      Sedgwick A C, Sun X L, Kim G. Boronate Based Fluorescence(ESIPT) Probe for Peroxynitrite[J]. Chem Commun, 2016,52(83):12350-12352. doi: 10.1039/C6CC06829D

    42. [42]

      Pan Y M, Huang J, Han Y F. A New ESIPT-based Fluorescent Probe for Highly Selective and Sensitive Detection of HClO in Aqueous Solution[J]. Tetrahedron Lett, 2017,58(13):1301-1304. doi: 10.1016/j.tetlet.2017.02.043

    43. [43]

      Xiao L L, Sun S G, Pei Z C. A Ga3+ Self-assembled Fluorescent Probe for ATP Imaging in Vivo[J]. Biosens Bioelectron, 2015,65:166-170. doi: 10.1016/j.bios.2014.10.038

    44. [44]

      Chen X Q, Zhou Y, Peng X J. Fluorescent and Colorimetric Probes for Detection of Thiols[J]. Chem Soc Rev, 2010,39(6):2120-2135. doi: 10.1039/b925092a

    45. [45]

      Fernandez A, Vendrell M. Smart Fluorescent Probes for Imaging Macrophage Activity[J]. Chem Soc Rev, 2016,45(5):1182-1196. doi: 10.1039/C5CS00567A

    46. [46]

      Xiao L L, Tu J, Sun S G. A Fluorescent Probe for Hydrazine and Its in Vivo Applications[J]. RSC Adv, 2014,4(79):41807-41811. doi: 10.1039/C4RA08101C

    47. [47]

      Chen Z, Zhong X X, Qu W B. A Highly Selective HBT-based "Turn-On" Fluorescent Probe for Hydrazine Detection and Its Application[J]. Tetrahedron Lett, 2017,58(26):2596-2601. doi: 10.1016/j.tetlet.2017.05.071

    48. [48]

      Zhang D, Yang Z H, Li H J. A Simple Excited-State Intramolecular Proton Transfer Probe Based on a New Strategy of Thiol-azide Reaction for the Selective Sensing of Cysteine and Glutathione[J]. Chem Commun, 2016,52(4):749-752. doi: 10.1039/C5CC07298K

    49. [49]

      Goswami S, Manna A, Paul S. A Turn On ESIPT Probe for Rapid and Ratiometric Fluorogenic Detection of Homocysteine and Cysteine in Water with Live Cell-Imaging[J]. Tetrahedron Lett, 2014,55(2):490-494. doi: 10.1016/j.tetlet.2013.11.055

    50. [50]

      Liu X J, Tian H H, Yang L. A Sensitive and Selective Fluorescent Probe for the Detection of Hydrogen Peroxide with a Red Emission and a Large Stokes Shift[J]. Sens Actuators B, 2018,255:1160-1165. doi: 10.1016/j.snb.2017.05.151

    51. [51]

      Li G P, Zhu D J, Liu Q. Rapid Detection of Hydrogen Peroxide Based on Aggregation Induced Ratiometric Fluorescence Change[J]. Org Lett, 2013,15(4):924-927. doi: 10.1021/ol4000845

    52. [52]

      Wang L Q, Zang Q G, Chen W S. A Ratiometric Fluorescent Probe with Excited-State Intramolecular Proton Transfer for Benzoyl Peroxide[J]. RSC Adv, 2013,3(23):8674-8676. doi: 10.1039/c3ra41209a

    53. [53]

      Deng B B, Ren M G, Kong X Q. An ESIPT Based Fluorescent Probe for Imaging Hydrogen Sulfide with a Large Turn-On Fluorescence Signal[J]. RSC Adv, 2016,6(67):62406-62410. doi: 10.1039/C6RA12127F

    54. [54]

      Chen L Y, Wu D, Lim C S. A Two-photon Fluorescent Probe for Specific Detection of Hydrogen Sulfide Based on a Familiar ESIPT Fluorophore Bearing AIE Characteristics[J]. Chem Commun, 2017,53(35):4791-4794. doi: 10.1039/C7CC01695F

    55. [55]

      Yushchenko D A, Fauerbach J A, Thirunavukkuarasu S. Fluorescent Ratiometric MFC Probe Sensitive to Early Stages of α-Synuclein Aggregation[J]. J Am Chem Soc, 2010,132(23):7860-7861. doi: 10.1021/ja102838n

  • 加载中
    1. [1]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    5. [5]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    9. [9]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    10. [10]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    11. [11]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    13. [13]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    14. [14]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    15. [15]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    16. [16]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    17. [17]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    18. [18]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    19. [19]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    20. [20]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

Metrics
  • PDF Downloads(230)
  • Abstract views(12123)
  • HTML views(3577)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return