Citation: LIU Chuantao, XIAO Ting, WANG Fang, CHEN Xiaoqiang. Synthesis of Binol-based Fluorescence Probe and Recognition of Arginine[J]. Chinese Journal of Applied Chemistry, ;2018, 35(1): 40-45. doi: 10.11944/j.issn.1000-0518.2018.01.170317 shu

Synthesis of Binol-based Fluorescence Probe and Recognition of Arginine

  • Corresponding author: WANG Fang, fangwang@njtech.edu.cn CHEN Xiaoqiang, chenxq@njtech.edu.cn
  • Co-first authors
  • Received Date: 5 September 2017
    Revised Date: 22 September 2017
    Accepted Date: 28 September 2017

    Fund Project: the Natural Science Foundation of the Jiangsu Higher Education Institutions of China 14KJA150005the National Natural Science Foundation of China 21406109the National Natural Science Foundation of China 21722605Supported by the National Natural Science Foundation of China(No.21722605, No.21376117, No.21406109), the Jiangsu Natural Science Funds for Distinguished Young Scholars(No.BK20140043), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.14KJA150005)the Jiangsu Natural Science Funds for Distinguished Young Scholars BK20140043the National Natural Science Foundation of China 21376117

Figures(8)

  • A kind of fluorescence probe based on (R)-2, 2'-dihydroxy-[1, 1'-binaphthalene]-3-carboxaldehyde was constructed. The structure was characterized by hydrogen/carbon nuclear magnetic resonance spectroscopy(1H NMR, 13C NMR) and mass spectrometry(MS). The results show that the fluorescent probe can detect arginine in a sensitive and highly selective manner with a double response of color and intense fluorescence. The corresponding fluorescence enhancement ratio is in good linear relation with the concentration of arginine(0~30 μmol/L), the correlation coefficient R2 is 0.9914 and the lowest detection limit is 1.3 μmol/L. In addition, the addition of arginine also caused the chiral structure of the probe to deflect, and the changes of binaphthol derivative axial chiral were verified by the changes of the circular dichromatic spectrum.
  • 加载中
    1. [1]

      Gong D Y, Tian Y J, Yang C D. A Fluorescence Enhancement Probe Based on BODIPY for the Discrimination of Cysteine from Homocysteine and Glutathione[J]. Biosens Bioelectron, 2016,85:178-183. doi: 10.1016/j.bios.2016.05.013

    2. [2]

      Liu G T, Liu D, Han X. A Hemicyanine-Based Colorimetric and Ratiometric Fluorescent Probe for Selective Detection of Cysteine and Bioimaging in Living Cell[J]. Talanta, 2017,170:406-412. doi: 10.1016/j.talanta.2017.04.038

    3. [3]

      Cheng D X, Zhu H Y. Determination of L-Arginine Content in Radix isatidis by a Composite Fluorescent Probe of Pd(Ⅱ)[J]. J Food Drug Anal, 2014,22(4):537-541. doi: 10.1016/j.jfda.2014.04.006

    4. [4]

      Shahida P S D, Affrose A, Pitchumani K. Plumbagin as Colorimetric and Ratiometric Sensor for Arginine[J]. Sens Actuators B:Chem, 2015,221:521-527. doi: 10.1016/j.snb.2015.06.149

    5. [5]

      Shang X F, Li J, Guo K R. Development and Cytotoxicity of Schiff Base Derivative as a Fluorescence Probe for the Detection of L-Arginine[J]. J Mol Struct, 2017,1134:369-373. doi: 10.1016/j.molstruc.2016.12.105

    6. [6]

      Shang X F, Luo L M, Ren K. Synthesis and Cytotoxicity of Azo Nano-Materials as New Biosensors for L-Arginine Determination[J]. Mater Sci Eng C, 2015,51:279-286. doi: 10.1016/j.msec.2015.03.005

    7. [7]

      Yu M M, Du W W, Li H. Near-infrared Ratiometric Fluorescent Detection of Arginine in Lysosome with a New Hemicyanine Derivative[J]. Biosens Bioelectron, 2017,92:385-389. doi: 10.1016/j.bios.2016.10.090

    8. [8]

      Lu X H, Wang W, Dong Q. A Multi-Functional Probe to Discriminate Lys, Arg, His, Cys, Hcy and GSH from Common Amino Acids[J]. Chem Commun, 2015,51(8):1498-501. doi: 10.1039/C4CC07757A

    9. [9]

      YANG Tingting, GUO Zhiqian, SHAO Andong. A Turn-on Fluorescent Probe for Cysteine Based on Benzopyran[J]. Chinese J Appl Chem, 2016,33(4):397-405. doi: 10.11944/j.issn.1000-0518.2016.04.160053 

    10. [10]

      Wang F, Nandhakumar R, HU Y. BINO(L)-based Chiral Receptors as Fluorescent and Colorimetric Chemosensors for Amino Acids[J]. J Org Chem, 2013,78(22):11571-11576. doi: 10.1021/jo401789a

    11. [11]

      Wang F, Nandhakumar R, Moon J H. Ratiometric Fluorescent Chemosensor for Silver Ion at Physiological pH[J]. Inorg Chem, 2011,50(6):2240-2245. doi: 10.1021/ic1018967

    12. [12]

      Chen X Q, Nam S W, KIM G H. A Near-Infrared Fluorescent Sensor for Detection of Cyanide in Aqueous Solution and Its Application for Bioimaging[J]. Chem Commun, 2010,46(47):8953-8955. doi: 10.1039/c0cc03398g

    13. [13]

      Liu C T, Xiao T, Wang Y C. Rhodamine Based Turn-on Fluorescent Sensor for Hg2+ and Its Application of Microfluidic System and Bioimaging[J]. Tetrahedron, 2017,73(34):5189-5193. doi: 10.1016/j.tet.2017.07.012

    14. [14]

      Wanderley M M, Wang C, Wu C D. A Chiral Porous Metal-organic Framework for Highly Sensitive and Enantioselective Fluorescence Sensing of Amino Alcohols[J]. J Am Chem Soc, 2012,134(22):9050-9053. doi: 10.1021/ja302110d

    15. [15]

      CHEN Xiuying, GUO Lin, ZHENG Changge. Synthesis and Spectral Properities of Benzothiazole Cyanine Dyes for Nucleic Acid Fluorescence Probe[J]. Chinese J Appl Chem, 2012,29(8):892-897.  

    16. [16]

      Alexey S, Monica P, Aaron J R. Anode Catalysts for Direct Hydrazine Fuel Cells:From Laboratory Test to an Electric Vehicle[J]. Angew Chem Int Ed, 2014,53:10336-10339. doi: 10.1002/anie.201404734

    17. [17]

      Wang H L, Zhou G D, Mao C. A Fluorescent Sensor Bearing Nitroolefin Moiety for the Detection of Thiols and Its Biological Imaging[J]. Dyes Pigm, 2013,96(1):232-236. doi: 10.1016/j.dyepig.2012.07.013

    18. [18]

      Zhou M, Smith A M, Das A K. Self-assembled Peptide-Based Hydrogels as Scaffolds for Anchorage-dependent Cells[J]. Biomaterials, 2009,30(13):2523-2530. doi: 10.1016/j.biomaterials.2009.01.010

    19. [19]

      Akira N, Mikio Y, Manami N. Direct Extract Derivatization for Determination of Amino Acids in Human Urine by Gas Chromatography and Mass Spectrometry[J]. J Chromatogr B, 2002,776:49-55. doi: 10.1016/S1570-0232(02)00075-2

    20. [20]

      Cao G P, Yang R Y, Zhuang Y F. Simple and Sensitive Determination of Trace Nitrite in Water by Zero-Crossing First-Derivative Synchronous Fluorescence Spectrometry Using 6-Amino-1, 3-naphthalenedisulfonic Acid as a New Fluorescent Probe[J]. Anal Bioanal Chem, 2017,409(19):4637-4646. doi: 10.1007/s00216-017-0409-4

    21. [21]

      Prasad S, Mandal I, Singh S. Near UV-Visible Electronic Absorption Originating from Charged Amino Acids in a Monomeric Protein[J]. Chem Sci, 2017,8(8):5416-5433. doi: 10.1039/C7SC00880E

    22. [22]

      Smidlehner T, Piantanida I. Novel DNA/RNA-targeting Amino Acid Beacon for the Versatile Incorporation at Any Position Within the Peptide Backbone[J]. Amino Acids, 2017,49(8):1381-1388. doi: 10.1007/s00726-017-2438-x

    23. [23]

      Chen C, Huang Q F, Zou S. Asymmetric Alkyne Addition to Aldehydes Catalyzed by Schiff Bases Made from 1, 1'-Bi-2-naphthol and Chiral Benzylic Amines[J]. Tetrahedron:Asymmetry, 2014,25(3):199-201. doi: 10.1016/j.tetasy.2013.12.013

    24. [24]

      Huang Z, Yu S S, Zhao X. A Convenient Fluorescent Method to Simultaneously Determine the Enantiomeric Composition and Concentration of Functional Chiral Amines[J]. Chem Eur J, 2014,20(50):16458-16461. doi: 10.1002/chem.201405143

    25. [25]

      Xu X C, Trindle C O, Zhang G Q. Fluorescent Recognition of Hg2+ by a 1, 1'-Binaphthyl-based Macrocycle:A Highly Selective Off-On-Off Response[J]. Chem Commun, 2015,51(40):8469-8472. doi: 10.1039/C5CC02457A

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    3. [3]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    6. [6]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    7. [7]

      Qiang HUZhiqi CHENZhong CHENXu WANGWeina WU . Pyridinium-chalcone-based ClO- fluorescent probe: Preparation and biological imaging applications. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1789-1795. doi: 10.11862/CJIC.20250086

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    10. [10]

      Pengli GUANRenhu BAIXiuling SUNBin LIU . Trianiline-derived aggregation-induced emission luminogen probe for lipase detection and cell imaging. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1817-1826. doi: 10.11862/CJIC.20250058

    11. [11]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    14. [14]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    15. [15]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    16. [16]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    17. [17]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    20. [20]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

Metrics
  • PDF Downloads(7)
  • Abstract views(1394)
  • HTML views(237)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return