Citation: CAO Jianfang, FAN Jiangli, GUO Yu, WU Hongmei. Density Functional Theory Research on the Optical Properties of Thiazole Orange Cyanine Dyes[J]. Chinese Journal of Applied Chemistry, ;2017, 34(12): 1474-1480. doi: 10.11944/j.issn.1000-0518.2017.12.170156 shu

Density Functional Theory Research on the Optical Properties of Thiazole Orange Cyanine Dyes

  • Corresponding author: CAO Jianfang, caojf@lnut.edu.cn FAN Jiangli, fanjl@dlut.edu.cn
  • Received Date: 15 May 2017
    Revised Date: 7 June 2017
    Accepted Date: 28 June 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21606118, No.21601075), the Natural Science Foundation of Liaoning Province(No.2015020249), the Open Project Fund of State Key Laboratory of Fine Chemicals(No.KF1614)the Natural Science Foundation of Liaoning Province 2015020249the National Natural Science Foundation of China 21601075the National Natural Science Foundation of China 21606118the Open Project Fund of State Key Laboratory of Fine Chemicals KF1614

Figures(5)

  • 4-(Diethylamino)butyl substituted trimethylthiazole orange(DEAB-TO3) is essentially nonfluorescent in aqueous solution, which can be used to detect nucleic acids in cells. The spectroscopic properties of 4-(two ethyl amino) butyl substituted methyl thiazole orange(DEAB-TO1) and DEAB-TO3 were studied by density functional theory method. The geometry optimization of the ground state and the excited state reveal highly distorted configuration of the excited state. Spectral analysis and orbital analysis show that the first excited state is a dark state with twisted intermolecular charge transfer. The ground state and the excited state potential energy curves show that DEAB-TO1 and DEAB-TO3 have very low energy gap and rotational energy barrier. These results explain their low background fluorescence.
  • 加载中
    1. [1]

      Mishra A, Behera R, Behera P. Cyanines During the 1990s:A Review[J]. Chem Rev, 2000,100(6):1973-2012. doi: 10.1021/cr990402t

    2. [2]

      Kurutos A, Ryzhova O, Trusova V. Novel Asymmetric Monomethine Cyanine Dyes Derived from Sulfobetaine Benzothia-zolium Moiety as Potential Fluorescent Dyes for Non-Covalent Labeling of DNA[J]. Dyes Pigm, 2016,130:122-128. doi: 10.1016/j.dyepig.2016.03.021

    3. [3]

      Kaloyanova S, Trusova V, Gorbenko G. Synthesis and Fluorescence Characterization of Novel Asymmetric Cyanine Dyes for DNA Detection[J]. J Photochem Photobiol A, 2011,217(1):147-156. doi: 10.1016/j.jphotochem.2010.10.002

    4. [4]

      Davidson Y, Gunn B, Soper S. Spectroscopic and Binding Properties of Near-Infrared Tricarbocyanine Dyes to Double-Stranded DNA[J]. Appl Spectros, 1996,50(2):211-221. doi: 10.1366/0003702963906429

    5. [5]

      Kaloyanova S, Crnolatac I, Lesev N. Synthesis and Study of Nucleic Acids Interactions of Novel Monomethine Cyanine Dyes[J]. Dyes Pigm, 2012,92(3):1184-1191. doi: 10.1016/j.dyepig.2011.08.019

    6. [6]

      Glavas-Obrovac L, Piantanida I, Marczi S. Minor Structural Differences of Monomethine Cyanine Derivatives Yield Strong Variation in Their Interactions with DNA, RNA as well as on Their in Vitro Antiproliferative Activity[J]. Bioorg Med Chem, 2009,17(13):4747-4755. doi: 10.1016/j.bmc.2009.04.070

    7. [7]

      CAO Jianfang. The Mechanism of Different Sensitivity of Cyanine Dyes Derivatives in Rotation-Restricted Environments(DNA or Viscosity)[D]. Dalian:Dalian University of Technology, 2014(in Chinese). 

    8. [8]

      WU Tong. Synthesis and Biological Applications of Thiazole Orange Derived Unsymmetrical Cyanine Dyes[D]. Dalian:Dalian University of Technology, 2012(in Chinese). 

    9. [9]

      CHEN Xiuying, GUO Lin, ZHENG Changge. Synthesis and Spectral Properties of Benzothiazole Cyanine Dyes for Nucleic Acid Fluorescence Probe[J]. Chinese J Appl Chem, 2012,29(8):892-897.  

    10. [10]

      CHEN Xiuying, NIU Yanming, GUO Lin. Synthesis and Spectral Properties of Thiazole Orange Compounds as DNA Fluorescent Probes[J]. Chem Res Appl, 2010,22(10):1267-1271. doi: 10.3969/j.issn.1004-1656.2010.10.008

    11. [11]

      Rye H S, Yue S, Wemmer D E. Stable Fluorescent Complexes of Double-stranded DNA with Bis-intercalating Asymmetric Cyanine Dyes:Properties and Applications[J]. Nucl Acids Res, 1992,20(11):2803-2812. doi: 10.1093/nar/20.11.2803

    12. [12]

      Netzel T L, Nafisi K, Zhao M. Base-Content Dependence of Emission Enhancements, Quantum Yields, and Lifetimes for Cyanine Dyes Bound to Double-Strand DNA:Photophysical Properties of Monomeric and Bichromomphoric DNA Stains[J]. J Phys Chem, 1995,99(51):17936-17947. doi: 10.1021/j100051a019

    13. [13]

      Silva G L, Ediz V, Yaron D. Experimental and Computational Investigation of Unsymmetrical Cyanine Dyes:Understanding Torsionally Responsive Fluorogenic Dyes[J]. J Am Chem Soc, 2007,129(17):5710-5718. doi: 10.1021/ja070025z

    14. [14]

      Peng X J, Wu T, Fan J L. An Effective Minor Groove Binder as a Red Fluorescent Marker for Live-Cell DNA Imaging and Quantification[J]. Angew Chem Int Ed, 2011,50(18):4180-4183. doi: 10.1002/anie.v50.18

    15. [15]

      Cao J, Wu T, Hu C. The Nature of the Different Environmental Sensitivity of Symmetrical and Unsymmetrical Cyanine Dyes:An Experimental and Theoretical Study[J]. Phys Chem Chem Phys, 2012,14(39):13702-13708. doi: 10.1039/c2cp42122d

    16. [16]

      Becke A D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior[J]. Phys Rev A, 1988,38(6):3098-3100. doi: 10.1103/PhysRevA.38.3098

    17. [17]

      Treutler O, Ahlrichs R. Efficient Molecular Numerical Integration Schemes[J]. J Chem Phys, 1995,102(1):346-354. doi: 10.1063/1.469408

    18. [18]

      ZHOU Danhong, LI Miaomiao, CUI Lili. Photophysical Properties and Photoinduced Electron Transfer Mechanism in a Near-IR Fluorescent Probe for Monitoring Peroxynitrite[J]. Acta Phys-Chim Sin, 2013,29(7):1453-1460.  

    19. [19]

      Cao X, Tolbert R W, McHale J L. Theoretical Study of Solvent Effects on the Intramolecular Charge Transfer of a Hemicyanine Dye[J]. J Phys Chem A, 1998,102(17):2739-2748. doi: 10.1021/jp972190e

  • 加载中
    1. [1]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    6. [6]

      Yi Li Zhaoxiang Cao Peng Liu Xia Wu Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154

    7. [7]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    8. [8]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    9. [9]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    10. [10]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

    11. [11]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    12. [12]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    13. [13]

      Wenliang Wang Weina Wang Lixia Feng Nan Wei Sufan Wang Tian Sheng Tao Zhou . Proof and Interpretation of Severe Spectroscopic Selection Rules. University Chemistry, 2025, 40(3): 415-424. doi: 10.12461/PKU.DXHX202408063

    14. [14]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    15. [15]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    16. [16]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    17. [17]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    18. [18]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    19. [19]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    20. [20]

      Hui Li Wei Cheng Meng Yu Yi Li . Improving Postgraduate Cultivation in Chemistry Discipline: A Case Study of the Chemistry Program in Jilin University. University Chemistry, 2024, 39(6): 17-22. doi: 10.3866/PKU.DXHX202403047

Metrics
  • PDF Downloads(5)
  • Abstract views(1684)
  • HTML views(160)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return