Citation: XU Kerui, ZHONG Zhiming, XU Huidong, WANG Xuan, ZHAO Min, WU Chuande. Highly Efficient Aerobic Oxidation of Arylalkanes with a Biomimetic Catalyst Platform[J]. Chinese Journal of Applied Chemistry, ;2017, 34(9): 1079-1085. doi: 10.11944/j.issn.1000-0518.2017.09.170191 shu

Highly Efficient Aerobic Oxidation of Arylalkanes with a Biomimetic Catalyst Platform

  • Corresponding author: WU Chuande, cdwu@zju.edu.cn
  • These authors contributed equally to this work
  • Received Date: 2 June 2017
    Revised Date: 26 June 2017
    Accepted Date: 27 June 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.21373180, No.21525312), the Fundamental Research Funds for the Central Universities(No.2017XZZX001-03A, No.2017FZA3007)the Fundamental Research Funds for the Central Universities 2017XZZX001-03Athe Fundamental Research Funds for the Central Universities 2017FZA3007the National Natural Science Foundation of China 21373180the National Natural Science Foundation of China 21525312

Figures(4)

  • It is a challenge to oxidize inert hydrocarbons with molecular oxygen, which can be easily realized by enzymes under mild conditions. Inspired by the catalytic mechanism of enzymes, we used the composite material CuPW11@HKUST-1, consisting of encapsulated Keggin-type polyoxometalate[CuPW11O39]5-(abbreviated as CuPW11) in the pore space of metal-organic framework HKUST-1, as a redox catalyst, and N-hydroxyphthalimide(NHPI) as a co-catalyst, for the biomimetic aerobic oxidation of arylalkanes under mild conditions. The biomimetic system exhibits enzyme-like features of high efficiency and high selectivity in the aerobic oxidation of arylalkanes by imitating the structural features, active sites and catalytic mechanism of enzymes, in which up to 99% yield and 17700 turnover number(TON) have been realized in the aerobic oxidation reaction. This work offers a feasible pathway for highly efficient aerobic oxidation of inert organic molecules under mild conditions.
  • 加载中
    1. [1]

      Hughes M D, Xu Y J, Jenkins P. Tunable Gold Catalysts for Selective Hydrocarbon Oxidation Under Mild Conditions[J]. Nature, 2005,437(7062):1132-1135. doi: 10.1038/nature04190

    2. [2]

      Liese A, Seelbach K, Eds. Industrial Biotransformations[M]. Wandrey, C. Wiley-VCH, Weinhiem, 2006.

    3. [3]

      Faber K. Biotransformations in Organic Chemistry[M]. Springer-Verlag, Berlin, 5th ed, 2004.

    4. [4]

      Kadish K M, Smith K M, Guilard R, Eds. The Porphyrin Handbook[M]. Academic Press, San Diego, 2000.

    5. [5]

      Sheldon R A. Metalloporphyrins in Catalytic Oxidation[M]. Marcel Dekker, Basel, 1994.

    6. [6]

      Wang S S, Yang G Y. Recent Advances in Polyoxometalate-Catalyzed Reactions[J]. Chem Rev, 2015,115(11):4893-4962. doi: 10.1021/cr500390v

    7. [7]

      Ye J J, Wu C D. Immobilization of Polyoxometalates in Crystalline Solids for Highly Efficient Heterogeneous Catalysis[J]. Dalton Trans, 2016,45(25):10101-10112. doi: 10.1039/C6DT01378C

    8. [8]

      Zhou H C, Long J R, Yaghi O M. Metal-Organic Frameworks Special Issue[J]. Chem Rev, 2012,112(2):673-1268. doi: 10.1021/cr300014x

    9. [9]

      Zhou H C, Kitagawa S. Themed Issues on Metal-Organic Frameworks[J]. Chem Soc Rev, 2014,43(16):5415-6172. doi: 10.1039/C4CS90059F

    10. [10]

      Zhao M, Ou S, Wu C D. Porous Metal-Organic Frameworks for Heterogeneous Biomimetic Catalysis[J]. Acc Chem Res, 2014,47(4):1199-1207. doi: 10.1021/ar400265x

    11. [11]

      Zou C, Zhang Z, Xu X. A Multifunctional Organic-Inorganic Hybrid Structure Based on MnⅢ-Porphyrin and Polyoxometalate as a Highly Effective Dye Scavenger and Heterogenous Catalyst[J]. J Am Chem Soc, 2012,134(1):87-90. doi: 10.1021/ja209196t

    12. [12]

      Yang X L, Xie M H, Zou C. Porous Metalloporphyrinic Frameworks Constructed from Metal 5, 10, 15, 20-Tetrakis(3, 5-biscarboxylphenyl)porphyrin for Highly Efficient and Selective Catalytic Oxidation of Alkylbenzenes[J]. J Am Chem Soc, 2012,134(25):10638-10645. doi: 10.1021/ja303728c

    13. [13]

      Liu J, Chen L, Cui H. Applications of Metal Organic Frameworks in Heterogeneous Supramolecular Catalysis[J]. Chem Soc Rev, 2014,43(16):6011-6061. doi: 10.1039/C4CS00094C

    14. [14]

      Ou S, Wu C D. Rational Construction of Metal-Organic Frameworks for Heterogeneous Catalysis[J]. Inorg Chem Front, 2014,1(10):721-734. doi: 10.1039/C4QI00111G

    15. [15]

      Wu C D, Zhao M. Incorporation of Molecular Catalysts in Metal Organic Frameworks for Highly Efficient Heterogeneous Catalysis[J]. Adv Mater, 2017,29(14)1605446. doi: 10.1002/adma.v29.14

    16. [16]

      Liu Y, Liu S, He D. Crystal Facets Make a Profound Difference in Polyoxometalate-Containing Metal-Organic Frameworks as Catalysts for Biodiesel Production[J]. J Am Chem Soc, 2015,137(39):12697-12703. doi: 10.1021/jacs.5b08273

    17. [17]

      Sun C Y, Liu S X, Liang D D. Highly Stable Crystalline Catalysts Based on a Microporous Metal-Organic Framework and Polyoxometalates[J]. J Am Chem Soc, 2009,131(5):1883-1888. doi: 10.1021/ja807357r

    18. [18]

      Zhao M, Ou S, Wu C D. Biomimetic Activation of Molecular Oxygen with a Combined Metalloporphyrinic Framework and Co-catalyst Platform[J]. ChemCatChem, 2017,9(3):1192-1196.  

    19. [19]

      Chui S S Y, Lo S M F, Charmant J P H. A Chemically Functionalizable Nanoporous Material[J]. Science, 1999,283(5405):1148-1150. doi: 10.1126/science.283.5405.1148

    20. [20]

      Song J, Luo Z, Britt D K. A Multiunit Catalyst with Synergistic Stability and Reactivity:A Polyoxometalate Metal Organic Framework for Aerobic Decontamination[J]. J Am Chem Soc, 2011,133(42):16839-16846. doi: 10.1021/ja203695h

    21. [21]

      Tourn C M, Tourn G F, Malik S A. Triheteropolyanions Containing Copper(Ⅱ), Manganese(Ⅱ), or Manganese(Ⅲ)[J]. J Inorg Nucl Chem, 1970,32(12):3875-3890. doi: 10.1016/0022-1902(70)80566-8

    22. [22]

      Labinger J A, Bercaw J E. Understanding and Exploiting C-H Bond Activation[J]. Nature, 2002,417(6888):507-514. doi: 10.1038/417507a

    23. [23]

      Bäckvall J E. Modern Oxidation Methods[M]. John Wiley, Weinheim, 2011.

    24. [24]

      Recupero F C, Punta F. Free Radical Functionalization of Organic Compounds Catalyzed by N-Hydroxyphthalimide[J]. Chem Rev, 2007,107(9):3800-3842. doi: 10.1021/cr040170k

  • 加载中
    1. [1]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    9. [9]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    12. [12]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    13. [13]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

Metrics
  • PDF Downloads(1)
  • Abstract views(749)
  • HTML views(94)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return