Citation: GONG Liaokuo, SONG Ying, SHEN Nannan, ZHANG Bo, WU Zhaofeng, HUANG Xiaoying. A Fluorescent Magnesium-Based Metal-Organic Framework with a Sensitive Sensing Property for Carbon Disulfide[J]. Chinese Journal of Applied Chemistry, ;2017, 34(9): 1059-1065. doi: 10.11944/j.issn.1000-0518.2017.09.170189 shu

A Fluorescent Magnesium-Based Metal-Organic Framework with a Sensitive Sensing Property for Carbon Disulfide

  • Corresponding author: WU Zhaofeng, zfwu@fjirsm.ac.cn HUANG Xiaoying, xyhuang@fjirsm.ac.cn
  • Received Date: 1 June 2017
    Revised Date: 19 June 2017
    Accepted Date: 22 June 2017

    Fund Project: the National Natural Science Foundation of China 21403233the 973 Program 2014CB845603Supported by the National Natural Science Foundation of China(No.21403233), the 973 Program(No.2014CB845603)

Figures(5)

  • Presented here are the solvothermal synthesis, structural characterization and fluorescent properties of a magnesium metal-organic framework(Mg-MOF), namely[Mg4(1, 4-NDC)4(DMA)2(CH3OH)2(H2O)2]·DMA·CH3OH(1, 1, 4-H2NDC=1, 4-naphthalene dicarboxylic acid, DMA=N, N'-Dimethylacetamide). Single-crystal X-ray diffraction studies revealed that compound 1 crystallized in the monoclinic space group P21/c(No.14) with a=2.06090(12) nm, b=2.21014(13) nm, c=1.50385(10) nm, β=111.399(3)°, V=6.3776(7) nm3, Z=4, Dc=1.403 g/cm3, F(000)=2824, R=0.0596 and wR=0.1225(I>2σ(I)). The structure of compound 1 features a three-dimensional(3D) network constructed from the 1, 4-NDC ligands as bridging linkers and binuclear magnesium clusters as the secondary building units, with cages occupied by different solvent molecules of DMA and CH3OH. Notably, fluorescence studies revealed that compound 1 demonstrated sensitive sensing towards carbon disulfide(CS2); remarkably, the fluorescence intensity of compound 1 could be almost completely quenched at the low concentration of 0.4%(volume fraction) of CS2. Thermal stability was investigated by thermogravimetric analysis which indicated that compound 1 could be stable up to 140℃.
  • 加载中
    1. [1]

      Chuang W L, Huang C C, Chen C J. Carbon Disulfide Encephalopathy:Cerebral Microangiopathy[J]. Neurotoxicology, 2007,28(2):387-393. doi: 10.1016/j.neuro.2006.10.008

    2. [2]

      Wang S, Irving G, Jiang L L. Oxidative Stress Mediated Hippocampal Neuron Apoptosis Participated in Carbon Disulfide-Induced Rats Cognitive Dysfunction[J]. Neurochem Res, 2017,42(2):583-594. doi: 10.1007/s11064-016-2113-8

    3. [3]

      Ciaffoni L, Peverall R, Ritchie G A D. Laser Spectroscopy on Volatile Sulfur Compounds:Possibilities for Breath Analysis[J]. J Breath Res, 2011,5(2)024002. doi: 10.1088/1752-7155/5/2/024002

    4. [4]

      Furton K G, Myers L J. The Scientific Foundation and Efficacy of the Use of Canines as Chemical Detectors for Explosives[J]. Talanta, 2001,54(3):487-500. doi: 10.1016/S0039-9140(00)00546-4

    5. [5]

      Lu W, Xiao P, Liu Z Z. Reaction-Driven Self-Assembled Micellar Nanoprobes for Ratiometric Fluorescence Detection of CS2with High Selectivity and Sensitivity[J]. ACS Appl Mater Interfaces, 2016,8(31):20100-20109. doi: 10.1021/acsami.6b06472

    6. [6]

      Zhang R K, Li G K, Hu Y F. Simple and Excellent Selective Chemiluminescence-Based CS2 On-Line Detection System for Rapid Analysis of Sulfur-Containing Compounds in Complex Samples[J]. Anal Chem, 2015,87(11):5649-5655. doi: 10.1021/acs.analchem.5b00722

    7. [7]

      Heine J, Muller-Buschbaum K. Engineering Metal-Based Luminescence in Coordination Polymers and Metal-Organic Frameworks[J]. Chem Soc Rev, 2013,42(24):9232-9242. doi: 10.1039/c3cs60232j

    8. [8]

      Hu Z C, Deibert B J, Li J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection[J]. Chem Soc Rev, 2014,43(16):5815-5840. doi: 10.1039/C4CS00010B

    9. [9]

      Banerjee D, Hu Z C, Li J. Luminescent Metal-Organic Frameworks as Explosive Sensors[J]. Dalton Trans, 2014,43(28):10668-10685. doi: 10.1039/C4DT01196A

    10. [10]

      Kreno L E, Leong K, Farha O K. Metal-Organic Framework Materials as Chemical Sensors[J]. Chem Rev, 2012,112(2):1105-1125. doi: 10.1021/cr200324t

    11. [11]

      Cui Y J, Yue Y F, Qian G D. Luminescent Functional Metal-Organic Frameworks[J]. Chem Rev, 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    12. [12]

      Meyer L V, Schoenfeld F, Zurawski A. A Blue Luminescent MOF as a Rapid Turn-Off/Turn-On Detector for H2O, O-2 and CH2Cl2, MeCN:3Ce(Im)3ImH ·ImH[J]. Dalton Trans, 2015,44(9):4070-4079. doi: 10.1039/C4DT03578J

    13. [13]

      Xu F, Wang H, Teat S J. Synthesis, Structure and Enhanced Photoluminescence Properties of Two Robust, Water Stable Calcium and Magnesium Coordination Networks[J]. Dalton Trans, 2015,44(47):20459-20463. doi: 10.1039/C5DT03705K

    14. [14]

      Jayaramulu K, Kanoo P, George S J. Tunable Emission From a Porous Metal-Organic Framework by Employing an Excited-State Intramolecular Proton Transfer Responsive Ligand[J]. Chem Commun, 2010,46(42):7906-7908. doi: 10.1039/c0cc02069a

    15. [15]

      Brown J W, Henderson B L, Kiesz M D. Photophysical Pore Control in an Azobenzene-Containing Metal-Organic Framework[J]. Chem Sci, 2013,4(7):2858-2864. doi: 10.1039/c3sc21659d

    16. [16]

      Wu Z F, Tan B, Feng M L. A Magnesium-Carboxylate Framework Showing Luminescent Sensing for CS2 and Nitroaromatic Compounds[J]. J Solid State Chem, 2015,223:59-64. doi: 10.1016/j.jssc.2014.06.018

    17. [17]

      Wu Z F, Tan B, Feng M L. A Magnesium MOF as a Sensitive Fluorescence Sensor for CS2 and Nitroaromatic Compounds[J]. J Mater Chem A, 2014,2(18):6426-6431. doi: 10.1039/C3TA15071B

    18. [18]

      Douvali A, Tsipis A C, Eliseeva S V. Turn-On Luminescence Sensing and Real-Time Detection of Traces of Water in Organic Solvents by a Flexible Metal-Organic Framework[J]. Angew Chem Int Ed, 2015,54(5):1651-1656. doi: 10.1002/anie.201410612

    19. [19]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr, 2015,71:3-8.

    20. [20]

      Zhai Q G, Lin Q P, Wu T Z. Induction of Trimeric[Mg3(OH)(CO2)6] in a Porous Framework by a Desymmetrized Tritopic Ligand[J]. Dalton Trans, 2012,41(10):2866-2868. doi: 10.1039/c2dt12215d

    21. [21]

      Guo Z Y, Li G H, Zhou L. Magnesium-based 3D Metal-Organic Framework Exhibiting Hydrogen-Sorption Hysteresis[J]. Inorg Chem, 2009,48(17):8069-8071. doi: 10.1021/ic901056d

    22. [22]

      Zhai Q G, Bu X, Zhao X. Advancing Magnesium-Organic Porous Materials Through New Magnesium Cluster Chemistry[J]. Cryst Growth Des, 2016,16(3):1261-1267. doi: 10.1021/acs.cgd.5b01297

    23. [23]

      Rood J A, Noll B C, Henderson K W. Synthesis, Structural Characterization, Gas Sorption and Guest-Exchange Studies of the Lightweight, Porous Metal-Organic Framework Alpha-[Mg3(O2CH)6][J]. Inorg Chem, 2006,45(14):5521-5528. doi: 10.1021/ic060543v

    24. [24]

      Lakowicz J R. Principles of Fluorescence Spectroscopy[M]. New York:Plenum Press, 1983:260-266.

  • 加载中
    1. [1]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    2. [2]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    3. [3]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    4. [4]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    5. [5]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    6. [6]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    7. [7]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    8. [8]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    9. [9]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    10. [10]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    11. [11]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    12. [12]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    13. [13]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    14. [14]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    15. [15]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    16. [16]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    17. [17]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(1)
  • Abstract views(828)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return