Citation: LI Na, CHANG Ze, BU Xianhe. A Tb3+ Coordination Polymer with Tetrazol Functional Sites:Construction and Fluorescent Sensing Property Toward Metal Ions[J]. Chinese Journal of Applied Chemistry, ;2017, 34(9): 1046-1051. doi: 10.11944/j.issn.1000-0518.2017.09.170188 shu

A Tb3+ Coordination Polymer with Tetrazol Functional Sites:Construction and Fluorescent Sensing Property Toward Metal Ions

  • Corresponding author: CHANG Ze, changze@nankai.edu.cn
  • Received Date: 1 June 2017
    Revised Date: 5 July 2017
    Accepted Date: 5 July 2017

    Fund Project: Supported by the National Natural Science Foundation of China(No.15JCZDJC38800, No.16JCQNJC02400)the National Natural Science Foundation of China 16JCQNJC02400the National Natural Science Foundation of China 15JCZDJC38800

Figures(4)

  • Lanthanide coordination polymers have been widely investigated in fluorescent sensing owing to their characters in component, structure, and properties. However, the functional targeted construction of lanthanide coordination polymers is still a challenge. Herein, we report the construction, characterization, and properties investigation of a new Tb3+ coordination polymer, namely[Tb(TZI)(DMF)2(H2O)]·(H2O)(1)(H3TZI=5-(1H-tetrazol-5-yl)isophthalic acid and DMF=N, N-dimethylmethanamide). Utilizing the distinct affinities between Tb3+ ion and carboxylate/tetrazole groups, the construction of coordination polymer is well achieved, while the tetrazole group has been introduced into the framework of coordination polymer as sensing sites. As a result, complex 1 reveals ions dependent emissions enhancement owing to the coordination between the ions and the tetrazole sites, which could be utilized for the sensing of Zn2+ and Na+ ions. These results could be instructive for the fluorescent sensing function targeted construction of lanthanide coordination polymers.
  • 加载中
    1. [1]

      Allendorf M D, Bauer C A, Bhakta R K. Luminescent Metal-Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1330-1352. doi: 10.1039/b802352m

    2. [2]

      Zhao B, Li N, Wang X. Host-Guest Engineering of Coordination Polymers for Highly Tunable Luminophores Based on Charge Transfer Emissions[J]. ACS Appl Mater Interfaces, 2017,9(3):2662-2668. doi: 10.1021/acsami.6b14554

    3. [3]

      Zhao M, Yao Z Q, Xu Y. L. Guest Dependent Structure and Acetone Sensing Properties of a 2D Eu3+ Coordination Polymer[J]. RSC Adv, 2017,7(4):2258-2263. doi: 10.1039/C6RA25681C

    4. [4]

      Dhakshinamoorthy A, Asiric A M, Garcia H. Metal-Organic Frameworks Catalyzed C-C and C-Heteroatom Coupling Reactions[J]. Chem Soc Rev, 2015,44(7):1922-1947. doi: 10.1039/C4CS00254G

    5. [5]

      Lee J Y, Farha O K, Roberts J. Metal-Organic Framework Materials as Catalysts[J]. Chem Soc Rev, 2009,38(5):1450-1459. doi: 10.1039/b807080f

    6. [6]

      Zhao M, Deng K, He L. Core-Shell Palladium Nanoparticle@Metal-Organic Frameworks as Multifunctional Catalysts for Cascade Reactions[J]. J Am Chem Soc, 2014,136(5):1738-1741. doi: 10.1021/ja411468e

    7. [7]

      Sumida K, Rogow D L, Mason J A. Carbon Dioxide Capture in Metal-Organic Frameworks[J]. Chem Rev, 2012,112(2)724781.

    8. [8]

      He Y, Zhou W, Qian G. Methane Storage in Metal-Organic Frameworks[J]. Chem Soc Rev, 2014,43(16):5657-5678. doi: 10.1039/C4CS00032C

    9. [9]

      DeCoste J B, Weston M H, Fuller P E. Metal-Organic Frameworks for Oxygen Storage[J]. Angew Chem Int Ed, 2014,53(1):1-5. doi: 10.1002/anie.v53.1

    10. [10]

      Barea E, Montoro C, Navarro J A R. Toxic Gas Removal-Metal-Organic Frameworks for the Capture and Degradation of Toxic Gases and Vapours[J]. Chem Soc Rev, 2014,43(16):5419-5430. doi: 10.1039/C3CS60475F

    11. [11]

      Kreno L E, Leong K, Farha O K. Metal Organic Framework Materials as Chemical Sensors[J]. Chem Rev, 2012,112(2)11051125.  

    12. [12]

      He Y P, Tan Y X, Zhang J. Guest Inducing Fluorescence Switching in Lanthanide-Tris((4-carboxyl)phenylduryl)amine Frameworks Integrating Porosity and Flexibility[J]. J Mater Chem C, 2014,2(22):4436-4441. doi: 10.1039/c4tc00329b

    13. [13]

      Cui Y, Yue Y F, Qian G D. Luminescent Functional Metal Organic Frameworks[J]. Chem Rev, 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    14. [14]

      Nouar F, Zaworotko M J, Eddaoudi M. Supermolecular Building Blocks(SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks[J]. J Am Chem Soc, 2008,130(6):1833-1835. doi: 10.1021/ja710123s

    15. [15]

      Liu S J, Cao C, Xie C C. Tricarboxylate-Based GdⅢ Coordination Polymers Exhibiting Large Magnetocaloric Effect[J]. Dalton Trans, 2016,45(22):9209-9215. doi: 10.1039/C6DT01349J

    16. [16]

      Zhao X L, Tian D, Gao Q. A Chiral Lanthanide Metal Organic Framework for Selective Sensing of Fe(Ⅲ) Ions[J]. Dalton Trans, 2016,45(3):1040-1046. doi: 10.1039/C5DT03283K

    17. [17]

      Sheldrick G M. SADABS. Program for Empirical Absorption Correction[CP]. University of Gottingen, Germany, 2008.

    18. [18]

      Sheldrick G M. SHELXTL NT Version 5.1. Program for Solution and Refinement of Crystal Structures[CP]. University of G ttingen, Germany, 1997.

    19. [19]

      Gao W, Li P, Liu F. Four Metal Organic Frameworks Based on the 5-(1 H-tetrazol-5-yl)isophthalic Acid Ligand:Luminescence and Magnetic Properties[J]. Cryst Eng Comm, 2016,18(9):1523-1531. doi: 10.1039/C5CE02096D

    20. [20]

      Chen B, Wang L, Xiao Y. A Luminescent Metal Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions[J]. Angew Chem Int Ed, 2009,48(3):500-503. doi: 10.1002/anie.v48:3

  • 加载中
    1. [1]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    2. [2]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    3. [3]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    4. [4]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    5. [5]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    14. [14]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    17. [17]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    18. [18]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    19. [19]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    20. [20]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

Metrics
  • PDF Downloads(1)
  • Abstract views(592)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return