Citation: LIU Kang, MA Dingxuan, SHI Zhan. Application of Metal-Organic Frameworks for Separation of Hydrocarbon Mixtures[J]. Chinese Journal of Applied Chemistry, ;2017, 34(9): 1006-1016. doi: 10.11944/j.issn.1000-0518.2017.09.170185 shu

Application of Metal-Organic Frameworks for Separation of Hydrocarbon Mixtures

  • Corresponding author: SHI Zhan, zshi@mail.jlu.edu.cn
  • Received Date: 27 May 2017
    Revised Date: 14 June 2017
    Accepted Date: 15 June 2017

    Fund Project: the Scientific and Technical Development Project of Qingdao 17-1-1-78-jchthe Foundation of the National Natural Science Foundation of China 21601103the Foundation of the National Natural Science Foundation of China 21371069the National High Technology Research and Development Program(863 program) of China 2013AA031702the Natural Science Foundation of Shandong Province, China ZR2016BP04Supported by the Foundation of the National Natural Science Foundation of China(No.21371069, No.21601103), the National High Technology Research and Development Program(863 program) of China(No.2013AA031702), the Natural Science Foundation of Shandong Province, China(No.ZR2016BP04), the Scientific and Technical Development Project of Qingdao(No.17-1-1-78-jch)

Figures(7)

  • Metal-organic frameworks(MOFs) are a new class of porous materials formed by the self-assembly of metal ions(or metal clusters) and organic ligands. Currently, the application of metal-organic frameworks in separation of light hydrocarbons including methane, acetylene, ethylene, ethane, propylene and propane has attracted tremendous interests. This article briefly reviews the latest development in this field, and discusses the factors influencing the separation effect and the future study prospect.
  • 加载中
    1. [1]

      Eldridge R B. Olefin/Paraffin Separation Technology:A Review[J]. Ind Eng Chem Res, 1993,32(10):2208-2212. doi: 10.1021/ie00022a002

    2. [2]

      Yaghi O M, Li G M, Li H L. Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework[J]. Nature, 1995,378(6558):703-706. doi: 10.1038/378703a0

    3. [3]

      HAN Yitong, LIU Min, LI Keyan. Preparation and Application of High Stability Metal-Organic Framework UIO-66[J]. Chinese J Appl Chem, 2016,33(4):367-378. doi: 10.11944/j.issn.1000-0518.2016.04.150439 

    4. [4]

      Rowsell J L C, Spencer E C, Eckert J. Gas Adsorption Sites in a Large-Pore Metal-Organic Framework[J]. Science, 2005,309(5739):1350-1354. doi: 10.1126/science.1113247

    5. [5]

      Han Y, Zheng H, Liu K. In-Situ Ligand Formation-Driven Preparation of a Heterometallic Metal Organic Framework for Highly Selective Separation of Light Hydrocarbons and Efficient Mercury Adsorption[J]. ACS Appl Mater Interfaces, 2016,8(35):23331-23337. doi: 10.1021/acsami.6b08397

    6. [6]

      Liu K, Hu H, Sun J. pH Value-Controlled Assembly of Photoluminescent Zinc Coordination Polymers in the Mixed-Ligand System[J]. J Mol Struct, 2017,1134:174-179. doi: 10.1016/j.molstruc.2016.12.075

    7. [7]

      Liu K, Sun Y, Hu H. Hydrothermal Syntheses and Characterization of a New Metal-Organic Framework of Gadolinium(Ⅲ) with 2, 4, 6-Tris(3, 5-dicarboxylphenyl-amino)-1, 3, 5-triazine[J]. Polyhedron, 2017,131:8-12. doi: 10.1016/j.poly.2017.04.009

    8. [8]

      GONG Wenpeng, KE Xiaofen, LI Zhipeng. Adsorption of Methylene Blue by Phosphomolybdiumtungstic Acid Decorated Metal Organic Framework MOF-5[J]. Chinese J Appl Chem, 2016,33(9):1047-1055.  

    9. [9]

      Herm Z R, Bloch E D, Long J R. Hydrocarbon Separations in Metal-Organic Frameworks[J]. Chem Mater, 2014,26(1):323-338. doi: 10.1021/cm402897c

    10. [10]

      Banerjee D, Liu J, Thallapally P K. Separation of C2 Hydrocarbons by Porous Materials:Metal Organic Frameworks as Platform[J]. Comments Inorg Chem, 2015,35(1):18-38. doi: 10.1080/02603594.2014.976704

    11. [11]

      Li J R, Sculley J, Zhou H C. Metal-Organic Frameworks for Separations[J]. Chem Rev, 2012,112(2):869-932. doi: 10.1021/cr200190s

    12. [12]

      Wu H H, Gong Q H, Olson D H. Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks[J]. Chem Rev, 2012,112(2):836-868. doi: 10.1021/cr200216x

    13. [13]

      Yang R T. Gas Separation by Adsorption Processes[M]. Butterworths, Boston, 1987.

    14. [14]

      Czaja A U, Trukhan N, Muller U. Industrial Applications of Metal-Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1284-1293. doi: 10.1039/b804680h

    15. [15]

      Arakawa H, Aresta M, Armor J N. Catalysis Research of Relevance to Carbon Management:Progress, Challenges, and Opportunities[J]. Chem Rev, 2001,101(4):953-996. doi: 10.1021/cr000018s

    16. [16]

      Guo X G, Fang G Z, Li G. Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen[J]. Science, 2014,344(6184):616-619. doi: 10.1126/science.1253150

    17. [17]

      Zhou S D, Li J L, Wu X N. Efficient Room-Temperature, Au+-Mediated Coupling of a Carbene Ligand with Methane To Generate C2H x(x=4, 6)[J]. Angew Chem Int Ed, 2016,55(1):441-444. doi: 10.1002/anie.201509320

    18. [18]

      Chen Z X, Xiang S C, Arman H D. A Microporous Metal-Organic Framework with Immobilized -OH Functional Groups within the Pore Surfaces for Selective Gas Sorption[J]. Eur J Inorg Chem, 2010,2010(24):3745-3749. doi: 10.1002/ejic.201000349

    19. [19]

      Das M C, Xu H, Wang Z. A Zn4O-Containing Doubly Interpenetrated Porous Metal-Organic Framework for Photocatalytic Decomposition of Methyl Orange[J]. Chem Commun, 2011,47(42):11715-11717. doi: 10.1039/c1cc12802g

    20. [20]

      Das M C, Xu H, Xiang S C. A New Approach to Construct a Doubly Interpenetrated Microporous Metal-Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules[J]. Chem Eur J, 2011,17(28):7817-7822. doi: 10.1002/chem.201100350

    21. [21]

      Zhang Z J, Xiang S C, Hong K L. Triple Framework Interpenetration and Immobilization of Open Metal Sites within a Microporous Mixed Metal-Organic Framework for Highly Selective Gas Adsorption[J]. Inorg Chem, 2012,51(9):4947-4953. doi: 10.1021/ic2021275

    22. [22]

      Zhang Z, Xiang S, Chen Y. A Robust Highly Interpenetrated Metal-Organic Framework Constructed from Pentanuclear Clusters for Selective Sorption of Gas Molecules[J]. Inorg Chem, 2010,49(18):8444-8448. doi: 10.1021/ic1010083

    23. [23]

      Horike S, Inubushi Y, Hori T. A Solid Solution Approach to 2D Coordination Polymers for CH4/CO2 and CH4/C2H6 Gas Separation:Equilibrium and Kinetic Studies[J]. Chem Sci, 2012,3(1):116-120. doi: 10.1039/C1SC00591J

    24. [24]

      Bloch E D, Queen W L, Krishna R. Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(Ⅱ) Coordination Sites[J]. Science, 2012,335(6076):1606-1610. doi: 10.1126/science.1217544

    25. [25]

      He Y, Krishna R, Chen B. Metal-Organic Frameworks with Potential for Energy-Efficient Adsorptive Separation of Light Hydrocarbons[J]. Energy Environ Sci, 2012,5(10):9107-9120. doi: 10.1039/c2ee22858k

    26. [26]

      Hu Y X, Xiang S C, Zhang W W. A New MOF-505 Analog Exhibiting High Acetylene Storage[J]. Chem Commun, 2009(48):7551-7553. doi: 10.1039/b917046d

    27. [27]

      Liu K, Li B, Li Y. An N-Rich Metal-Organic Framework with a rht Topology:High CO2 and C2 Hydrocarbons Uptake and Selective Capture from CH4[J]. Chem Commun, 2014,50(39):5031-5033. doi: 10.1039/c4cc00375f

    28. [28]

      Liu K, Ma D, Li B. High Storage Capacity and Separation Selectivity for C2 Hydrocarbons over Methane in the Metal-Organic Framework Cu-TDPAT[J]. J Mater Chem A, 2014,2(38):15823-15828. doi: 10.1039/C4TA03656E

    29. [29]

      Xiang S, Zhang Z, Zhao C. Rationally Tuned Micropores within Enantiopure Metal Organic Frameworks for Highly Selective Separation of Acetylene and Ethylene[J]. Nat Commun, 2011,2204. doi: 10.1038/ncomms1206

    30. [30]

      Yang S H, Ramirez-Cuesta A J, Newby R. Supramolecular Binding and Separation of Hydrocarbons within a Functionalized Porous Metal-Organic Framework[J]. Nat Chem, 2015,7(2):121-129.  

    31. [31]

      Cui X L, Chen K J, Xing H B. Pore Chemistry and Size Control in Hybrid Porous Materials for Acetylene Capture from Ethylene[J]. Science, 2016,353(6295):141-144. doi: 10.1126/science.aaf2458

    32. [32]

      Bao Z, Alnemrat S, Yu L. Adsorption of Ethane, Ethylene, Propane, and Propylene on a Magnesium-Based Metal-Organic Framework[J]. Langmuir, 2011,27(22):13554-13562. doi: 10.1021/la2030473

    33. [33]

      Wang Q M, Shen D M, Bulow M. Metallo-Organic Molecular Sieve for Gas Separation and Purification[J]. Micropor Mesopor Mater, 2002,55(2):217-230. doi: 10.1016/S1387-1811(02)00405-5

    34. [34]

      Ploegmakers J, Japip S, Nijmeijer K. Mixed Matrix Membranes Containing MOFs for Ethylene/Ethane Separation-Part B:Effect of Cu3BTC2 on Membrane Transport Properties[J]. J Membr Sci, 2013,428:331-340. doi: 10.1016/j.memsci.2012.11.013

    35. [35]

      Nicholson T M, Bhatia S K. Electrostatically Mediated Specific Adsorption of Small Molecules in Metallo-Organic Frameworks[J]. J Phys Chem B, 2006,110(49):24834-24836. doi: 10.1021/jp065102b

    36. [36]

      Nicholson T M, Bhatia S K. Role of Electrostatic Effects in the Pure Component and Binary Adsorption of Ethylene and Ethane in Cu-Tricarboxylate Metal-Organic Frameworks[J]. Adsorpt Sci Technol, 2007,25(8):607-619. doi: 10.1260/0263-6174.25.8.607

    37. [37]

      Wang S, Yang Q, Zhong C. Adsorption and Separation of Binary Mixtures in a Metal-Organic Framework Cu-BTC:A Computational Study[J]. Sep Purif Technol, 2008,60(1):30-35. doi: 10.1016/j.seppur.2007.07.050

    38. [38]

      Lamia N, Jorge M, Granato M A. Adsorption of Propane, Propylene and Isobutane on a Metal-Organic Framework:Molecular Simulation and Experiment[J]. Chem Eng Sci, 2009,64(14):3246-3259. doi: 10.1016/j.ces.2009.04.010

    39. [39]

      Jorge M, Lamia N, Rodrigues A E. Molecular Simulation of Propane/Propylene Separation on the Metal-Organic Framework CuBTC[J]. Colloids Surf A, 2010,357(1/2/3):27-34.  

    40. [40]

      Rubes M, Wiersum A D, Llewellyn P L. Adsorption of Propane and Propylene on CuBTC Metal-Organic Framework:Combined Theoretical and Experimental Investigation[J]. J Phys Chem C, 2013,117(21):11159-11167. doi: 10.1021/jp401600v

    41. [41]

      Fischer M, Gomes J R B, Froeba M. Modeling Adsorption in Metal Organic Frameworks with Open Metal Sites:Propane/Propylene Separations[J]. Langmuir, 2012,28(22):8537-8549. doi: 10.1021/la301215y

    42. [42]

      Yoon J W, Jang I T, Lee K Y. Adsorptive Separation of Propylene and Propane on a Porous Metal-Organic Framework, Copper Trimesate[J]. Bull Korean Chem Soc, 2010,31(1):220-223. doi: 10.5012/bkcs.2010.31.01.220

    43. [43]

      Wu X F, Bao Z B, Yuan B. Microwave Synthesis and Characterization of MOF-74(M=Ni, Mg) for Gas Separation[J]. Micropor Mesopor Mater, 2013,180:114-122. doi: 10.1016/j.micromeso.2013.06.023

    44. [44]

      Bohme U, Barth B, Paula C. Ethene/Ethane and Propene/Propane Separation via the Olefin and Paraffin Selective Metal Organic Framework Adsorbents CPO-27 and ZIF-8[J]. Langmuir, 2013,29(27):8592-8600. doi: 10.1021/la401471g

    45. [45]

      Bae Y S, Lee C Y, Kim K C. High Propene/Propane Selectivity in Isostructural Metal Organic Frameworks with High Densities of Open Metal Sites[J]. Angew Chem Int Ed, 2012,51(8):1857-1860. doi: 10.1002/anie.v51.8

    46. [46]

      Geier S J, Mason J A, Bloch E D. Selective Adsorption of Ethylene over Ethane and Propylene over Propane in the Metal-Organic Frameworks M2(dobdc) (M=Mg, Mn, Fe, Co, Ni, Zn)[J]. Chem Sci, 2013,4(5):2054-2061. doi: 10.1039/c3sc00032j

    47. [47]

      Yang R T, Kikkinides E S. New Sorbents for Olefin/Paraffin Separations by Adsorption via π-Complexation[J]. AIChE J, 1995,41(3):509-517. doi: 10.1002/(ISSN)1547-5905

    48. [48]

      Jiang W J, Yin Y, Liu X Q. Fabrication of Supported Cuprous Sites at Low Temperatures:An Efficient, Controllable Strategy Using Vapor-Induced Reduction[J]. J Am Chem Soc, 2013,135(22):8137-8140. doi: 10.1021/ja4030269

    49. [49]

      Qin J X, Wang Z M, Liu X Q. Low-Temperature Fabrication of Cu(Ⅰ) Sites in Zeolites by Using a Vapor-Induced Reduction Strategy[J]. J Mater Chem A, 2015,3(23):12247-12251. doi: 10.1039/C5TA02569A

    50. [50]

      Chang G G, Huang M H, Su Y. Immobilization of Ag(Ⅰ) into a Metal-Organic Framework with -SO3H Sites for Highly Selective Olefin-Paraffin Separation at Room Temperature[J]. Chem Commun, 2015,51(14):2859-2862. doi: 10.1039/C4CC09679G

    51. [51]

      Zhang Y M, Li B Y, Krishna R. Highly Selective Adsorption of Ethylene over Ethane in a MOF Featuring the Combination of Open Metal Site and π-Complexation[J]. Chem Commun, 2015,51(13):2714-2717. doi: 10.1039/C4CC09774B

    52. [52]

      Chang G G, Bao Z B, Ren Q L. Fabrication of Cuprous Nanoparticles in MIL-101:An Efficient Adsorbent for the Separation of Olefin-Paraffin Mixtures[J]. RSC Adv, 2014,4(39):20230-20233. doi: 10.1039/C4RA02125H

    53. [53]

      Liao P Q, Zhang W X, Zhang J P. Efficient Purification of Ethene by an Ethane-Trapping Metal-Organic Framework[J]. Nat Commun, 2015,68697. doi: 10.1038/ncomms9697

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    5. [5]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    6. [6]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(5)
  • Abstract views(608)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return