Citation: ZHAO Xueyan, BAO Shouxin, CAI Xuechao, ZHENG Xiaoqiu, ZHAO Ruixue, LI Yunhui, PANG Maolin. Size and Shape Controlled Growth of Micron or Nano Sized Metal Organic Frameworks[J]. Chinese Journal of Applied Chemistry, ;2017, 34(9): 979-995. doi: 10.11944/j.issn.1000-0518.2017.09.170182 shu

Size and Shape Controlled Growth of Micron or Nano Sized Metal Organic Frameworks

  • Corresponding author: ZHENG Xiaoqiu, 532197959@qq.com ZHAO Ruixue, 735927287@qq.com PANG Maolin, mlpang@ciac.ac.cn
  • These authors contributed equally to this work
  • Received Date: 27 May 2017
    Revised Date: 7 June 2017
    Accepted Date: 9 June 2017

    Fund Project: National Natural Science Foundation of China 21471145Supported by the National Natural Science Foundation of China(No.21471145), the Science and Technology Development Planning Project of Jilin Province(No.20170101179JC), the "Hundred Talents Program" of the Chinese Academy of Sciencesthe Science and Technology Development Planning Project of Jilin Province 20170101179JC

Figures(15)

  • Size and shape controlled growth of nano or micron sized metal-organic frameworks(MOFs) has attracted great attention in recent years. The ability to deliberately access monodisperse nano or microsized MOFs offers prospective applications in heterogeneous catalysis, porous membranes, thin-film devices, controlled drug release, and biomedical fields. This review highlights the recent development of size and shape controlled growth as well as the application of nano or micron sized MOFs, finally the future prospective is briefly addressed.
  • 加载中
    1. [1]

      Yaghi O M, Li G, Li H. Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework[J]. Nature, 1995,378(6558):703-706. doi: 10.1038/378703a0

    2. [2]

      Furukawa H, Cordova K E, O'Keeffe M. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science, 2013,341(6149)1230444. doi: 10.1126/science.1230444

    3. [3]

      Stock N, Biswas S. Synthesis of Metal-Organic Frameworks(MOFs):Routes to Various MOF Topologies, Morphologies, and Composites[J]. Chem Rev, 2012,112(2):933-969. doi: 10.1021/cr200304e

    4. [4]

      Li B, Wen H M, Cui Y. Emerging Multifunctional Metal-Organic Framework Materials[J]. Adv Mater, 2016,28(40):8819-8860. doi: 10.1002/adma.v28.40

    5. [5]

      Li J R, Kuppler R J, Zhou H C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1477-1504. doi: 10.1039/b802426j

    6. [6]

      Lee J, Farha O K, Roberts J. Metal-Organic Framework Materials as Catalysts[J]. Chem Soc Rev, 2009,38(5):1450-1459. doi: 10.1039/b807080f

    7. [7]

      He C, Liu D, Lin W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds:Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers[J]. Chem Rev, 2015,115(19):11079-11108. doi: 10.1021/acs.chemrev.5b00125

    8. [8]

      Horcajada P, Gref R, Baati T. Metal-Organic Frameworks in Biomedicine[J]. Chem Rev, 2011,112(2):1232-1268.  

    9. [9]

      Furukawa S, Reboul J, Diring S. Structuring of Metal-Organic Frameworks at the Mesoscopic/Macroscopic Scale[J]. Chem Soc Rev, 2014,43(16):5700-5734. doi: 10.1039/C4CS00106K

    10. [10]

      Carne A, Carbonell C, Imaz I. Nanoscale Metal-Organic Materials[J]. Chem Soc Rev, 2011,40(1):291-305. doi: 10.1039/C0CS00042F

    11. [11]

      Spokoyny A M, Kim D, Sumrein A. Infinite Coordination Polymer Nano-and Microparticle Structures[J]. Chem Soc Rev, 2009,38(5):1218-1227. doi: 10.1039/b807085g

    12. [12]

      Sindoro M, Yanai N, Jee A Y. Colloidal-Sized Metal-Organic Frameworks:Synthesis and Applications[J]. Acc Chem Res, 2014,47(2):459-469. doi: 10.1021/ar400151n

    13. [13]

      Carne-Sanchez A, Imaz I, Stylianou K C. Metal-Organic Frameworks:From Molecules/Metal Ions to Crystals to Superstructures[J]. Chem Eur J, 2014,20(18):5192-5201. doi: 10.1002/chem.v20.18

    14. [14]

      Férey G, Mellot-Draznieks C, Serre C. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science, 2005,309(5743):2040-2042. doi: 10.1126/science.1116275

    15. [15]

      Serre C, Mellotdraznieks C, Surblé S. Role of Solvent-Host Interactions that Lead to Very Large Swelling of Hybrid Frameworks[J]. Science, 2007,315(5820):1828-1831. doi: 10.1126/science.1137975

    16. [16]

      Chalati T, Horcajada P, Gref R. Optimisation of the Synthesis of MOF Nanoparticles Made of Flexible Porous Iron Fumarate MIL-88A[J]. J Mater Chem, 2011,21(7):2220-2227. doi: 10.1039/C0JM03563G

    17. [17]

      Horcajada P, Serre C, Grosso D. Colloidal Route for Preparing Optical Thin Films of Nanoporous Metal-Organic Frameworks[J]. Adv Mater, 2009,21(19):1931-1935. doi: 10.1002/adma.v21:19

    18. [18]

      Hermes S, Witte T, Hikov T. Trapping Metal-Organic Framework Nanocrystals:An in-situ Time-Resolved Light Scattering Study on the Crystal Growth of MOF-5 in Solution[J]. J Am Chem Soc, 2007,129(17):5324-5325. doi: 10.1021/ja068835i

    19. [19]

      Cravillon J, Muünzer S, Lohmeier S J. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework[J]. Chem Mater, 2009,21(8):1410-1412. doi: 10.1021/cm900166h

    20. [20]

      Cho W, Lee H J, Oh M. Growth-Controlled Formation of Porous Coordination Polymer Particles[J]. J Am Chem Soc, 2008,130(50):16943-16946. doi: 10.1021/ja8039794

    21. [21]

      Tsuruoka T, Furukawa S, Takashima Y. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth[J]. Angew Chem Int Ed, 2009,48(26):4739-4743. doi: 10.1002/anie.v48:26

    22. [22]

      Umemura A, Diring S, Furukawa S. Morphology Design of Porous Coordination Polymer Crystals by Coordination Modulation[J]. J Am Chem Soc, 2011,133(39):15506-15513. doi: 10.1021/ja204233q

    23. [23]

      Diring S, Furukawa S, Takashima Y. Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes[J]. Chem Mater, 2010,22(16):4531-4538. doi: 10.1021/cm101778g

    24. [24]

      Pang M, Cairns A J, Liu Y. Highly Monodisperse MⅢ-Based soc-MOFs(M=In and Ga) with Cubic and Truncated Cubic Morphologies[J]. J Am Chem Soc, 2012,134(32):13176-13179. doi: 10.1021/ja3049282

    25. [25]

      Pang M, Cairns A J, Liu Y. Synthesis and Integration of Fe-soc-MOF Cubes into Colloidosomes via a Single-Step Emulsion-Based Approach[J]. J Am Chem Soc, 2013,135(28):10234-10237. doi: 10.1021/ja403994u

    26. [26]

      Cai X, Deng X, Xie Z. Synthesis of Highly Monodispersed Ga-soc-MOF Hollow Cubes, Colloidosomes and Nanocomposites[J]. Chem Commun, 2016,52(64):9901-9904. doi: 10.1039/C6CC04525A

    27. [27]

      Cai X, Lin J, Pang M. Facile Synthesis of Highly Uniform Fe-MIL-88B Particles[J]. Cryst Growth Des, 2016,16(7):3565-3568. doi: 10.1021/acs.cgd.6b00313

    28. [28]

      Bao S, Cai X, Shi Y. Effect of Modulators on Size and Shape-Controlled Growth of Highly Uniform In-NDC-MOF Particles[J]. CrystEngComm, 2017,19(14):1875-1878. doi: 10.1039/C7CE00308K

    29. [29]

      Pan Y, Heryadi D, Zhou F. Tuning the Crystal Morphology and Size of Zeolitic Imidazolate Framework-8 in Aqueous Solution by Surfactants[J]. CrystEngComm, 2011,13(23):6937-6940. doi: 10.1039/c1ce05780d

    30. [30]

      Ranft A, Betzler S B, Haase F. Additive-Mediated Size Control of MOF Nanoparticles[J]. CrystEngComm, 2013,15(45):9296-9300. doi: 10.1039/c3ce41152d

    31. [31]

      Chui S S-Y, Lo S M-F, Charmant J P. A Chemically Functionalizable Nanoporous Material[J]. Science, 1999,283(5405):1148-1150. doi: 10.1126/science.283.5405.1148

    32. [32]

      Morris W, Briley W E, Auyeung E. Nucleic AcidMetal Organic Framework(MOF) Nanoparticle Conjugates[J]. J Am Chem Soc, 2014,136(20):7261-7264. doi: 10.1021/ja503215w

    33. [33]

      Zhu Y J, Chen F. Microwave-Assisted Preparation of Inorganic Nanostructures in Liquid Phase[J]. Chem Rev, 2014,114(12):6462-6555. doi: 10.1021/cr400366s

    34. [34]

      Ni Z, Masel R I. Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis[J]. J Am Chem Soc, 2006,128(38):12394-12395. doi: 10.1021/ja0635231

    35. [35]

      Demessence A, Horcajada P, Serre C. Elaboration and Properties of Hierarchically Structured Optical Thin Films of MIL-101(Cr)[J]. Chem Commun, 2009,46:7149-7151.  

    36. [36]

      García Márquez A, Demessence A, Platero-Prats A E. Green Microwave Synthesis of MIL-100(Al, Cr, Fe) Nanoparticles for Thin-Film Elaboration[J]. Eur J Inorg Chem, 2012,2012(32):5165-5174. doi: 10.1002/ejic.201200710

    37. [37]

      Qiu L G, Li Z Q, Wu Y. Facile Synthesis of Nanocrystals of a Microporous Metal-Organic Framework by an Ultrasonic Method and Selective Sensing of Organoamines[J]. Chem Commun, 2008,31:3642-3644.  

    38. [38]

      Yaghi O, Li H, Groy T. Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1, 3, 5-Benzenetricarboxylic Acid[J]. J Am Chem Soc, 1996,118(38):9096-9101. doi: 10.1021/ja960746q

    39. [39]

      Yoshida J, Nishikiori S I, Kuroda R. Formation of 1 D and 3D Coordination Polymers in the Solid State Induced by Mechanochemical and Annealing Treatments:Bis(3-Cyano-Pentane-2, 4-Dionato) Metal Complexes[J]. Chem Eur J, 2008,14(34):10570-10578. doi: 10.1002/chem.200801627

    40. [40]

      Sun X, Dong S, Wang E. Coordination-Induced Formation of Submicrometer-Scale, Monodisperse, Spherical Colloids of Organic-Inorganic Hybrid Materials at Room Temperature[J]. J Am Chem Soc, 2005,127(38):13102-13103. doi: 10.1021/ja0534809

    41. [41]

      Oh M, Mirkin C A. Chemically Tailorable Colloidal Particles from Infinite Coordination Polymers[J]. Nature, 2005,438(7068):651-654. doi: 10.1038/nature04191

    42. [42]

      Vaucher S, Li M, Mann S. Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions[J]. Angew Chem Int Ed, 2000,39(10):1793-1796. doi: 10.1002/(SICI)1521-3773(20000515)39:10<1793::AID-ANIE1793>3.0.CO;2-Y

    43. [43]

      Rieter W J, Taylor K M, An H. Nanoscale Metal-Organic Frameworks as Potential Multimodal Contrast Enhancing Agents[J]. J Am Chem Soc, 2006,128(28):9024-9025. doi: 10.1021/ja0627444

    44. [44]

      Taylor K M, Jin A, Lin W. Surfactant-Assisted Synthesis of Nanoscale Gadolinium Metal Organic Frameworks for Potential Multimodal Imaging[J]. Angew Chem Int Ed, 2008,47(40):7722-7725. doi: 10.1002/anie.v47:40

    45. [45]

      Xu H, Rao X, Gao J. A Luminescent Nanoscale Metal-Organic Framework with Controllable Morphologies for Spore Detection[J]. Chem Commun, 2012,48(59):7377-7379. doi: 10.1039/c2cc32346j

    46. [46]

      Liu Q, Jin L N, Sun W Y. Facile Fabrication and Adsorption Property of a Nano/Microporous Coordination Polymer with Controllable Size and Morphology[J]. Chem Commun, 2012,48(70):8814-8816. doi: 10.1039/c2cc34192a

    47. [47]

      Shekhah O, Liu J, Fischer R. MOF Thin Films:Existing and Future Applications[J]. Chem Soc Rev, 2011,40(2):1081-1106. doi: 10.1039/c0cs00147c

    48. [48]

      Zacher D, Shekhah O, Wöll C. Thin Films of Metal Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1418-1429. doi: 10.1039/b805038b

    49. [49]

      Zacher D, Schmid R, Wöll C. Surface Chemistry of Metal-Organic Frameworks at the Liquid Solid Interface[J]. Angew Chem Int Ed, 2011,50(1):176-199. doi: 10.1002/anie.v50.1

    50. [50]

      Gascon J, Kapteijn F. Metal-Organic Framework Membranes-High Potential, Bright Future?[J]. Angew Chem Int Ed, 2010,49(9):1530-1532. doi: 10.1002/anie.200906491

    51. [51]

      Yanai N, Sindoro M, Yan J. Electric Field-Induced Assembly of Monodisperse Polyhedral Metal Organic Framework Crystals[J]. J Am Chem Soc, 2012,135(1):34-37.

    52. [52]

      Lu G, Cui C, Zhang W. Synthesis and Self-Assembly of Monodispersed Metal-Organic Framework Microcrystals[J]. Chem Asian J, 2013,8(1):69-72. doi: 10.1002/asia.v8.1

    53. [53]

      Lee H J, Cho W, Oh M. Advanced Fabrication of Metal-Organic Frameworks:Template-Directed Formation of Polystyrene@ZIF-8 Core-Shell and Hollow ZIF-8 Microspheres[J]. Chem Commun, 2012,48(2):221-223. doi: 10.1039/C1CC16213F

    54. [54]

      Huo J, Marcello M, Garai A. MOF-Polymer Composite Microcapsules Derived from Pickering Emulsions[J]. Adv Mater, 2013,25(19):2717-2722. doi: 10.1002/adma.v25.19

    55. [55]

      Ameloot R, Vermoortele F, Vanhove W. Interfacial Synthesis of Hollow Metal-Organic Framework Capsules Demonstrating Selective Permeability[J]. Nat Chem, 2011,3(5):382-387. doi: 10.1038/nchem.1026

    56. [56]

      Carné-Sánchez A, Imaz I, Cano-Sarabia M. A Spray-Drying Strategy for Synthesis of Nanoscale Metal Organic Frameworks and Their Assembly into Hollow Superstructures[J]. Nat Chem, 2013,5(3):203-211. doi: 10.1038/nchem.1569

    57. [57]

      Farrusseng D, Aguado S, Pinel C. Metal-Organic Frameworks:Opportunities for Catalysis[J]. Angew Chem Int Ed, 2009,48(41):7502-7513. doi: 10.1002/anie.v48:41

    58. [58]

      Zhao M, Ou S, Wu C D. Porous Metal-Organic Frameworks for Heterogeneous Biomimetic Catalysis[J]. Acc Chem Res, 2014,47(4):1199-1207. doi: 10.1021/ar400265x

    59. [59]

      Dhakshinamoorthy A, Opanasenko M, Cejka J. Metal Organic Frameworks as Heterogeneous Catalysts for the Production of Fine Chemicals[J]. Catal Sci Technol, 2013,3(10):2509-2540. doi: 10.1039/c3cy00350g

    60. [60]

      Dhakshinamoorthy A, Alvaro M, Garcia H. Commercial Metal-Organic Frameworks as Heterogeneous Catalysts[J]. Chem Commun, 2012,48(92):11275-11288. doi: 10.1039/c2cc34329k

    61. [61]

      Zhu Q L, Xu Q. Metal-Organic Framework Composites[J]. Chem Soc Rev, 2014,43(16):5468-5512. doi: 10.1039/C3CS60472A

    62. [62]

      Li D, Wang H, Zhang X. Morphology Design of IRMOF-3 Crystal by Coordination Modulation[J]. Cryst Growth Des, 2014,14(11):5856-5864. doi: 10.1021/cg501089f

    63. [63]

      Lin Y, Kong C, Chen L. Facile Synthesis of Aluminum-Based Metal-Organic Frameworks with Different Morphologies and Structures through an OH- Assisted Method[J]. Chem Asian J, 2013,8(8):1873-1878. doi: 10.1002/asia.v8.8

    64. [64]

      Tanaka D, Henke A, Albrecht K. Rapid Preparation of Flexible Porous Coordination Polymer Nanocrystals with Accelerated Guest Adsorption Kinetics[J]. Nat Chem, 2010,2(5):410-416. doi: 10.1038/nchem.627

    65. [65]

      Sakata Y, Furukawa S, Kondo M. Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing[J]. Science, 2013,339(6116):193-196. doi: 10.1126/science.1231451

    66. [66]

      Zhang C, Gee J A, Sholl D S. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals:Adsorption-Induced Transitions in ZIF-8[J]. J Phys Chem C, 2014,118(35):20727-20733. doi: 10.1021/jp5081466

    67. [67]

      Horcajada P, Chalati T, Serre C. Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging[J]. Nat Mater, 2010,9(2):172-178. doi: 10.1038/nmat2608

    68. [68]

      Huxford-Phillips R C, Russell S R, Liu D. Lipid-Coated Nanoscale Coordination Polymers for Targeted Cisplatin Delivery[J]. RSC Adv, 2013,3(34):14438-14443. doi: 10.1039/c3ra42033g

    69. [69]

      Dekrafft K E, Xie Z, Cao G. Iodinated Nanoscale Coordination Polymers as Potential Contrast Agents for Computed Tomography[J]. Angew Chem Int Ed, 2009,48(52):9901-9904. doi: 10.1002/anie.v48:52

    70. [70]

      Yuan G, Zhu C, Liu Y. Nano-and Microcrystals of a Mn-Based Metal-Oligomer Framework Showing Size-Dependent Magnetic Resonance Behaviors[J]. Chem Commun, 2011,47(11):3180-3182. doi: 10.1039/c0cc03981k

    71. [71]

      Hu Z, Deibert B J, Li J. Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection[J]. Chem Soc Rev, 2014,43(16):5815-5840. doi: 10.1039/C4CS00010B

    72. [72]

      Oh M, Mirkin C A. Ion Exchange as a Way of Controlling the Chemical Compositions of Nano-and Microparticles Made from Infinite Coordination Polymers[J]. Angew Chem, 2006,118(33):5618-5620. doi: 10.1002/(ISSN)1521-3757

    73. [73]

      Rieter W J, Taylor K M, Lin W. Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing[J]. J Am Chem Soc, 2007,129(32):9852-9853. doi: 10.1021/ja073506r

    74. [74]

      Batabyal S K, Peedikakkal A M P, Ramakrishna S. Coordination-Polymeric Nanofibers and Their Field-Emission Properties[J]. Macromol Rapid Commun, 2009,30(15):1356-1361. doi: 10.1002/marc.v30:15

    75. [75]

      Liu K, Zheng Y, Yang M. Fabrication of Size-Controllable and Luminescent Dysprosium Benzenetricarboxylate Nanobelts at Room Temperature[J]. Solid State Sci, 2010,12(12):2047-2053. doi: 10.1016/j.solidstatesciences.2010.08.025

    76. [76]

      Cui Y, Yue Y, Qian G. Luminescent Functional Metal-Organic Frameworks[J]. Chem Rev, 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    77. [77]

      Rocha J, Carlos L D, Paz F A. Luminescent Multifunctional Lanthanides-Based Metal-Organic Frameworks[J]. Chem Soc Rev, 2011,40(2):926-940. doi: 10.1039/C0CS00130A

    78. [78]

      Allendorf M D, Bauer C A, Bhakta R K. Luminescent Metal-Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1330-1352. doi: 10.1039/b802352m

    79. [79]

      Liu K, Zheng Y, Jia G. Nano/Micro-Scaled La(1, 3, 5-BTC)(H2O)6 Coordination Polymer:Facile Morphology-Controlled Fabrication and Color-Tunable Photoluminescence Properties by Co-Doping Eu3+, Tb3+[J]. J Solid State Chem, 2010,183(10):2309-2316. doi: 10.1016/j.jssc.2010.07.040

    80. [80]

      Yang J, Wang H, Lu L. Controlled Synthesis of Organic-Inorganic Hybrid Nanofibers by a Wet-Chemical Route[J]. Synth Met, 2008,158(14):572-576. doi: 10.1016/j.synthmet.2008.04.005

    81. [81]

      Leong W L, Batabyal S K, Kasapis S. Fluorescent Magnesium(Ⅱ) Coordination Polymeric Hydrogel[J]. Chem Eur J, 2008,14(29):8822-8829. doi: 10.1002/chem.200801129

    82. [82]

      Zhao X J, Yang J H, Liu Y. Metal-Organic Coordination Polymers of Tb2-xEu x(BDC)3(H2O) n with Tunable Fluorescence and Smart Response Toward Aldehydes(0 ≤ x ≤ 2, BDC=1, 4-Benzenedicarboxylate)[J]. RSC Adv, 2014,4(5):2573-2576. doi: 10.1039/C3RA45725G

    83. [83]

      Xu B, Guo H, Wang S. Solvothermal Synthesis of Luminescent Eu(BTC)(H2O)DMF Hierarchical Architectures[J]. CrystEngComm, 2012,14(8):2914-2919. doi: 10.1039/c2ce06572j

    84. [84]

      Cai D, Guo H, Wen L. Fabrication of Hierarchical Architectures of Tb-MOF by a "Green Coordination Modulation Method" for the Sensing of Heavy Metal Ions[J]. CrystEngComm, 2013,15(34):6702-6708. doi: 10.1039/c3ce40820e

    85. [85]

      Zhao S N, Li L J, Song X Z. Lanthanide Ion Codoped Emitters for Tailoring Emission Trajectory and Temperature Sensing[J]. Adv Funct Mater, 2015,25(9):1463-1469. doi: 10.1002/adfm.v25.9

    86. [86]

      Song X Z, Song S Y, Zhao S N. Single-Crystal-to-Single-Crystal Transformation of a Europium(Ⅲ) Metal-Organic Framework Producing a Multi-responsive Luminescent Sensor[J]. Adv Funct Mater, 2014,24(26):4034-4041. doi: 10.1002/adfm.201303986

    87. [87]

      Uehara H, Diring S, Furukawa S. Porous Coordination Polymer Hybrid Device with Quartz Oscillator:Effect of Crystal Size on Sorption Kinetics[J]. J Am Chem Soc, 2011,133(31):11932-11935. doi: 10.1021/ja205082p

    88. [88]

      Yu L, Hu H, Wu H B. Complex Hollow Nanostructures:Synthesis and Energy-Related Applications[J]. Adv Mater, 2017,291604563. doi: 10.1002/adma.201604563

    89. [89]

      Xia W, Mahmood A, Zou R. Metal-Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion[J]. Energy Environ Sci, 2015,8(7):1837-1866. doi: 10.1039/C5EE00762C

    90. [90]

      Xie Z, Xu W, Cui X. Recent Progress in Metal-Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications[J]. ChemSusChem, 2017,10(8):1645-1663. doi: 10.1002/cssc.201601855

    91. [91]

      Xu X, Cao R, Jeong S. Spindle-Like Mesoporous A-Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries[J]. Nano Lett, 2012,12(9):4988-4991. doi: 10.1021/nl302618s

    92. [92]

      Santos V P, Wezendonk T A, Jaén J J D. Metal Organic Framework-Mediated Synthesis of Highly Active and Stable Fischer-Tropsch Catalysts[J]. Nat Commun, 2015,66451. doi: 10.1038/ncomms7451

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    3. [3]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    5. [5]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    8. [8]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    9. [9]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    19. [19]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(30)
  • Abstract views(2834)
  • HTML views(311)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return