Citation: LIU Jingwei, SHI Wei, CHENG Peng. Progress of Metal-Organic Frameworks for Lithium Ion Batteries[J]. Chinese Journal of Applied Chemistry, ;2017, 34(9): 996-1005. doi: 10.11944/j.issn.1000-0518.2017.09.170177 shu

Progress of Metal-Organic Frameworks for Lithium Ion Batteries

  • Corresponding author: SHI Wei, shiwei@nankai.edu.cn
  • Received Date: 25 May 2017
    Revised Date: 22 June 2017
    Accepted Date: 26 June 2017

    Fund Project: the National Natural Science Foundation of China 21421001Supported by the National Natural Science Foundation of China(No.21622105, No.21421001)the National Natural Science Foundation of China 21622105

Figures(6)

  • Metal-Organic frameworks(MOFs) have been applied in rechargeable lithium ion batteries due to their high surface areas and tunable structures. We reviewed the recent progresses on MOFs as negative and positive electrodes for Li-ion battery. The state-of-the-art results and problems to be faced are also summarized. The perspective of using metal-organic frameworks is prospected for the future material innovation in electrochemical energy storage.
  • 加载中
    1. [1]

      Tarascon J M, Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001,414:359-367. doi: 10.1038/35104644

    2. [2]

      Simon P, Gogotsi Y. Materials for Electrochemical Capacitors[J]. Nat Mater, 2008,7:845-854. doi: 10.1038/nmat2297

    3. [3]

      Bruce P G, Freunberger S A, Hardwick L J. Li-O2 and Li-S Batteries with High Energy Storage[J]. Nat Mater, 2011,11:19-29. doi: 10.1038/nmat3191

    4. [4]

      Liu K, Zhang X, Meng X. Constraining the Coordination Geometries of Anthanide Centers and Magnetic Building Blocks in Frameworks:A New Strategy for Molecular Nanomagnets[J]. Chem Soc Rev, 2016,5(9):2423-2439.

    5. [5]

      Long J R, Yaghi O M. The Pervasive Chemistry of Metal-Organic Frameworks[J]. Chem Soc Rev, 2009,38(5):1213-1214. doi: 10.1039/b903811f

    6. [6]

      Liu K, Shi W, Cheng P. Toward Heterometallic Single-Molecule Magnets:Synthetic Strategy, Structures and Properties of 3 d-4f Discrete Complexes[J]. Coord Chem Rev, 2015,289/290:74-122. doi: 10.1016/j.ccr.2014.10.004

    7. [7]

      Sun J K, Xu Q. Functional Materials Derived from Open Framework Templates/Precursors:Synthesis and Applications[J]. Energy Environ Sci, 2014,7(7):2071-2100. doi: 10.1039/c4ee00517a

    8. [8]

      Xia W, Mahmood A, Zou R. Metal Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion[J]. Energy Environ Sci, 2015,8(7):1837-1866. doi: 10.1039/C5EE00762C

    9. [9]

      Li G, Yang H, Li F. Facile formation of a Nanostructured NiP2@C Material for Advanced Lithium-Ion Battery Anode Using Adsorption Property of Metal-Organic Framework[J]. J Mater Chem A, 2016,4(24):9593-9599. doi: 10.1039/C6TA02059C

    10. [10]

      Peng B, Chen J. Functional Materials with High-Efficiency Energy Storage and Conversion for Batteries and Fuel Cells[J]. Coord Chem Rev, 2015,253(23/24):2805-2813.

    11. [11]

      Li X X, Cheng F Y, Zhang S N. Shape-Controlled Synthesis and Lithium-Storage Study of Metal-Organic Frameworks Zn4O(1, 3, 5-benzenetribenzoate)2[J]. J Power Sources, 2006,160(1):542-547. doi: 10.1016/j.jpowsour.2006.01.015

    12. [12]

      Saravanan K, Nagarathinam M, Balaya P. Lithium Storage in a Metal-Organic Framework with Diamondoid Topology-A Case Study on Metal Formats[J]. J Mater Chem, 2010,20(38):8329-8335. doi: 10.1039/c0jm01671c

    13. [13]

      Liu Q, Yu L, Wang Y. Manganese-Based Layered Coordination Polymer:Synthesis, Structural Characterization, Magnetic Property, and Electrochemical Performance in Lithium-Ion Batteries[J]. Inorg Chem, 2013,52(6):2817-2822. doi: 10.1021/ic301579g

    14. [14]

      Nie P, Shen L F, Luo H F. Prussian Blue Analogues:A New Class of Anode Materials for Lithium Ion Batteries[J]. J Mater Chem A, 2014,2(16):5852-5857. doi: 10.1039/C4TA00062E

    15. [15]

      Gou L, Hao L, Shi Y. One-pot Synthesis of a Metal-Organic Framework as an Anode for Li-Ion Batteries with Improved Capacity and Cycling Stability[J]. J Solid State Chem, 2014,210(1):121-124. doi: 10.1016/j.jssc.2013.11.014

    16. [16]

      An T, Wang Y, Tang J. A Flexible Ligand-Based Wavy Layered Metal-Organic Framework for Lithium-Ion Storage[J]. J Colloid Interface Sci, 2015,445:320-325. doi: 10.1016/j.jcis.2015.01.012

    17. [17]

      Lin Y, Zhang Q, Zhao C. An Exceptionally Stable Functionalized Metal-Organic Framework for Lithium Storage[J]. Chem Commun, 2015,51(4):697-699. doi: 10.1039/C4CC07149B

    18. [18]

      Li G, Yang H, Li F. A Coordination Chemistry Approach for Lithium-Ion Batteries:The Coexistence of Metal and Ligand Redox Activities in a One Dimensional Metal-Organic Material[J]. Inorg Chem, 2016,55(10):4935-4940. doi: 10.1021/acs.inorgchem.6b00450

    19. [19]

      Li G, Li F, Yang H. Graphene Oxides Doped MIL-101(Cr) as Anode Materials for Enhanced Electrochemistry Performance of Lithium Ion Battery[J]. Inorg Chem Commun, 2016,64:63-66. doi: 10.1016/j.inoche.2015.12.017

    20. [20]

      Han X, Yi F, Sun T. Synthesis and Electrochemical Performance of Li and Ni 1, 4, 5, 8-Naphthalenetetracarboxylates as Anodes for Li-ion Batteries[J]. Electrochem Commun, 2012,25:136-139. doi: 10.1016/j.elecom.2012.09.014

    21. [21]

      Dong C, Xu Li. Cobalt-and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries[J]. ACS Appl Mater Interfaces, 2017,9(8):7160-7168. doi: 10.1021/acsami.6b15757

    22. [22]

      Song H, Shen L, Wang J. Reversible Lithiation Delithiation Chemistry in Cobalt Based Metal-Organic Framework Nanowire Electrode Engineering for Advanced Lithium-Ion Batteries[J]. J Mater Chem A, 2016,4(40):15411-15419. doi: 10.1039/C6TA05925B

    23. [23]

      Li T, Hu X, Lou H. Reversible Lithium Storage in Manganese and Cobalt 1, 2, 4, 5-Benzenetetracarboxylate Metal-Organic Framework with High Capacity[J]. RSC Adv, 2016,6(66):61319-61324. doi: 10.1039/C6RA07727G

    24. [24]

      Ge D, Peng J, Qu G. Nanostructured Co(Ⅱ)-based MOFs as Promising Anodes for Advanced Lithium Storage[J]. New J Chem, 2016,40(11):9238-9244. doi: 10.1039/C6NJ02568D

    25. [25]

      Wang Y, Zhang M, Li S. Diamondoid-Structured Polymolybdate-Based Metal Organic Frameworks as High-Capacity Anodes for Lithium-Ion Batteries[J]. Chem Commun, 2017,53(37):5204-5207. doi: 10.1039/C6CC10208E

    26. [26]

      Li C, Hu X, Lou X. Bimetallic Coordination Polymer as a Promising Anode Material for Lithium-Ion Batteries[J]. Chem Commun, 2016,52(10):2035-2038. doi: 10.1039/C5CC07151H

    27. [27]

      Shen L, Song H, Wang C. Metal-Organic Frameworks Triggered High-Efficiency Li Storage in Fe-Based Polyhedral Nanorods for Lithium-ion Batteries[J]. Electrochim Acta, 2017,235:595-603. doi: 10.1016/j.electacta.2017.03.105

    28. [28]

      Li S L, Xu Q. Metal Organic Frameworks as Platforms for Clean Energy[J]. Energy Environ Sci, 2013,6(6):1656-1671. doi: 10.1039/c3ee40507a

    29. [29]

      XU Chao, CHEN Sheng, WANG Xin. Progress in the Chemistry of Materials Based on Graphene[J]. Chinese J Appl Chem, 2011,28(1):1-9.  

    30. [30]

      Morozan A, Jaouen F. Metal-Organic Frameworks for Electrochemical Applications[J]. Energy Environ Sci, 2013,5(11):9269-9290.  

    31. [31]

      XIE Zhigang. Electrochemical Performance of Cathode Material LiFePO4 of Lithium Ion Batteries[J]. Chinese J Appl Chem, 2007,24(2):238-240.  

    32. [32]

      Wang L, Han Y, Feng X. Metal-Organic Frameworks for Energy Storage:Batteries and Supercapacitors[J]. Coord Chem Rev, 2015,307:361-381.  

    33. [33]

      Ferey F, Millange M, Morcrette C. Mixed-Valence Li/Fe-Based Metal-Organic Frameworks with Both Reversible Redox and Sorption Properties[J]. Angew Chem Int Ed, 2007,46(18):3259-3263. doi: 10.1002/(ISSN)1521-3773

    34. [34]

      Fateeva A, Horcajada P, Devic T. Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL-68(Fe) Solid[J]. Eur J Inorg Chem, 2010,24:3789-3794.  

    35. [35]

      Nguyen T L, Devic T, Mialane P. Reinvestigation of the MIL(M=Ni, Co)/TetraThiafulvaleneTetraCarboxylate System Using High-Throughput Methods:Isolation of a Molecular Complex and Its Single-Crystal-to-Single-Crystal Transformation to a Two-Dimensional Coordination Polymer[J]. Inorg Chem, 2010,49(22):10710-10717. doi: 10.1021/ic101906u

    36. [36]

      Nagarathinam M, Saravanan K, Phua E J. Redox-Active Metal-Centered Oxalato Phosphate Open Framework Cathode Materials for Lithium Ion Batteries[J]. Angew Chem Int Ed, 2012,51(24):5866-5870. doi: 10.1002/anie.201200210

    37. [37]

      Zhang Z Y, Yoshikawa H, Awaga K. Monitoring the Solid-State Electrochemistry of Cu(2, 7-AQDC)(AQDC=Anthraquinone Dicarboxylate) in a Lithium Battery:Coexistence of Metal and Ligand Redox Activities in a Metal-Organic Framework[J]. J Am Chem Soc, 2014,136(46):16112-16115. doi: 10.1021/ja508197w

    38. [38]

      Wang Z Q, Li X, Yang Y. Highly Dispersed β-NiS Nanoparticles in Porous Carbon Matrices by a Template Metal-Organic Framework Method for Lithium-Ion Cathode[J]. J Mater Chem A, 2014,2(21):7912-7916. doi: 10.1039/c4ta00367e

    39. [39]

      Shin J, Kim M, Cirera J. MIL-101(Fe) as a Lithium-Ion Battery Electrode Material:A Relaxation and Intercalation Mechanism During Lithium Insertion[J]. J Mater Chem A, 2015,3(8):4738-4744. doi: 10.1039/C4TA06694D

    40. [40]

      Peng Z, Yi X, Liu X. Triphenylamine-Based Metal-Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability[J]. ACS Appl Mater Interfaces, 2016,8(23):14578-14585. doi: 10.1021/acsami.6b03418

    41. [41]

      Ma Y F, Chen Y S. Three-dimensional Graphene Networks:Synthesis, Properties and Applications[J]. Natl Sci Rev, 2015,2(1):40-53. doi: 10.1093/nsr/nwu072

    42. [42]

      Xu X D, Cao R G, Jeong S. Spindle-like Mesoporous α-Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries[J]. Nano Lett, 2012,12(9):4988-4991. doi: 10.1021/nl302618s

    43. [43]

      Zheng F C, He M N, Yang Y. Nano Electrochemical Reactors of Fe2O3 Nanoparticles Embedded in Shells of Nitrogen-Doped Hollow Carbon Spheres as High-Performance Anodes for Lithium-Ion Batteries[J]. Nanoscale, 2015,7(8):3410-3417. doi: 10.1039/C4NR06321J

    44. [44]

      Guo H, Li T T, Chen W W. General Design of Hollow Porous CoFe2O4 Nanocubes from Metal Organic Frameworks with Extraordinary Lithium Storage[J]. Nanoscale, 2014,6(24):15168-15174. doi: 10.1039/C4NR04422C

    45. [45]

      Li C, Chen T, Xu W. Mesoporous Nanostructured Co3O4 Derived from MOF Template:A High-Performance Anode Material for Lithium-Ion Batteries[J]. J Mater Chem A, 2015,3(10):5585-5591. doi: 10.1039/C4TA06914E

    46. [46]

      Shao J, Wan Z M, Liu H M. Metal Organic Frameworks-Derived Co3O4 Hollow Dodecahedrons with Controllable Interiors as Outstanding Anodes for Li Storage[J]. J Mater Chem A, 2014,2(31):12194-12200. doi: 10.1039/C4TA01966K

    47. [47]

      Wu R B, Qian X K, Yu F. MOF-Templated Formation of Porous CuO Hollow Octahedra for Lithium-Ion Battery Anode Materials[J]. J Mater Chem A, 2013,1(37):11126-11129. doi: 10.1039/c3ta12621h

    48. [48]

      Banerjee A, Singh U, Aravindan V. Synthesis of CuO Nanostructures from Cu-based Metal Organic Framework(MOF-199) for Application as Anode for Li-ion Batteries[J]. Nano Energy, 2013,2(6):1158-1163. doi: 10.1016/j.nanoen.2013.04.008

    49. [49]

      Hu L, Huang Y M, Zhang F P. CuO/Cu2O Composite Hollow Polyhedrons Fabricated from Metal-Organic Framework Templates for Lithium-Ion Battery Anodes with a Long Cycling Life[J]. Nanoscale, 2013,5(10):4186-4190. doi: 10.1039/c3nr00623a

    50. [50]

      Pang H C, Guan B, Sun W W. Metal-Organic-Frameworks Derivation of Mesoporous NiO Nanorod for High-Performance Lithium Ion Batteries[J]. Electrochim Acta, 2016,213:351-357. doi: 10.1016/j.electacta.2016.06.163

    51. [51]

      Guo W X, Sun W W, Wang Y. Multilayer CuO@NiO Hollow Spheres:Microwave-Assisted Metal-Organic Framework Derivation and Highly Reversible Structure-Matched Stepwise Lithium Storage[J]. ACS Nano, 2015,9(11):11462-11471. doi: 10.1021/acsnano.5b05610

    52. [52]

      Wu L L, Wang Z, Long Y. Multishelled Ni xCo3-xO4 Hollow Microspheres Derived from Bimetal Organic Frameworks as Anode Materials for High-Performance Lithium-Ion Batteries[J]. Small, 2017,13(17):1604270-1604277. doi: 10.1002/smll.201604270

    53. [53]

      Wang M H, Yang H, Zhou X L. Rational Design of SnO2@C Nanocomposites for Lithium Ion Batteries by Utilizing Adsorption Properties of MOFs[J]. Chem Commun, 2016,52(4):717-720. doi: 10.1039/C5CC07983G

    54. [54]

      Li F C, Du J, Yang H. Nitrogen-Doped-Carbon-Coated SnO2 Nanoparticles Derived from a SnO2@MOF Composite as a Lithium Ion Battery Anode Material[J]. RSC Adv, 2017,7(32):20062-20067. doi: 10.1039/C7RA02703F

    55. [55]

      Wang Z Q, Li X, Xu H. Porous Anatase TiO2 Constructed from a Metal-Organic Framework for Advanced Lithium-Ion Battery Anodes[J]. J Mater Chem A, 2014,2(31):12571-12575. doi: 10.1039/C4TA02029D

    56. [56]

      Yang S J, Nam S, Kim T. Preparation and Exceptional Lithium Anodic Performance of Porous Carbon-Coated ZnO Quantum Dots Derived from a Metal-Organic Framework[J]. J Am Chem Soc, 2013,135(20):7394-7397. doi: 10.1021/ja311550t

    57. [57]

      Zuo L, Chen S H, Wu J F. Facile Synthesis of Three-Dimensional Porous Carbon with High Surface Area by Calcining Metal-Organic Framework for Lithium-Ion Batteries Anode Materials[J]. RSC Adv, 2014,4(106):61604-61610. doi: 10.1039/C4RA10575C

    58. [58]

      Zheng S, Li X, Yan B, et al. Transition-Metal(Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage[J]. Adv Energy Mater, 2017-2-21[2017-5-16].http://onlinelibrary.wiley.com/doi/10.1002/aenm.201602733/epdf.[published online ahead of print]

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    10. [10]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    14. [14]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    19. [19]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(73)
  • Abstract views(2622)
  • HTML views(554)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return