Citation: ZHANG Xuefeng, XU Yantong, LIU Siyang, YE Jiawen, ZHANG Jiepeng. Cu(Ⅰ) Phosphorescence Doping of Zeolitic Zinc-Imidazolate Framework MAF-6[J]. Chinese Journal of Applied Chemistry, ;2017, 34(9): 1052-1058. doi: 10.11944/j.issn.1000-0518.2017.09.170170 shu

Cu(Ⅰ) Phosphorescence Doping of Zeolitic Zinc-Imidazolate Framework MAF-6

  • Corresponding author: ZHANG Jiepeng, zhangjp7@mail.sysu.edu.cn
  • Received Date: 23 May 2017
    Revised Date: 16 June 2017
    Accepted Date: 16 June 2017

    Fund Project: the National Natural Science Foundation of China 91622109Supported by the National Natural Science Foundation of China(No.91622109), Natural Science Foundation of Guangdong(No.S2012030006240)Natural Science Foundation of Guangdong S2012030006240

Figures(9)

  • For luminescence sensing, Cu(Ⅰ)-based coordination complexes have unique advantages such as low cost and long luminescence lifetime. However, Cu(Ⅰ) coordination complexes are generally unstable in air, easily oxidized by oxygen, or quite difficult to form porous frameworks. Among various zeolitic zinc-imidazolate porous coordination polymers, RHO-[Zn(eim)2] (MAF-6, Heim=2-ethylimidazole) has received considerable interest due to its large pore size and superior hydrophobicity. In this paper, by virtue of the similar coordination behaviors of Cu(Ⅰ) and Zn(Ⅱ) ions, an isomorphic phosphorescent porous coordination polymer, Cu:MAF-6, was obtained through partial substituting Zn(Ⅱ) ions of MAF-6 with Cu(Ⅰ) ions. The phosphorescence of Cu:MAF-6 exhibits very high oxygen sensitivity(Ksv=28.09 kPa-1; limit of detection=0.36 Pa) in the low oxygen concentration environment( < 600 Pa).
  • 加载中
    1. [1]

      Wang X D, Wolfbeis O S. Optical Methods for Sensing and Imaging Oxygen:Materials, Spectroscopies and Applications[J]. Chem Soc Rev, 2014,43(10):3666-3761. doi: 10.1039/C4CS00039K

    2. [2]

      Zhao Q, Li F, Huang C. Phosphorescent Chemosensors Based on Heavy-Metal Complexes[J]. Chem Soc Rev, 2010,39(8):3007-3030. doi: 10.1039/b915340c

    3. [3]

      Lin R B, Li F, Liu S Y. A Noble-Metal-Free Porous Coordination Framework with Exceptional Sensing Efficiency for Oxygen[J]. Angew Chem Int Ed, 2013,52(50):13429-13433. doi: 10.1002/anie.201307217

    4. [4]

      Qi X L, Liu S Y, Lin R B. Phosphorescence Doping in a Flexible Ultramicroporous Framework for High and Tunable Oxygen Sensing Efficiency[J]. Chem Commun, 2013,49(61):6864-6866. doi: 10.1039/c3cc43461c

    5. [5]

      Liu S Y, Qi X L, Lin R B. Porous Cu(Ⅰ) Triazolate Framework and Derived Hybrid Membrane with Exceptionally High Sensing Efficiency for Gaseous Oxygen[J]. Adv Funct Mater, 2014,24(37):5866-5872. doi: 10.1002/adfm.201401125

    6. [6]

      Ye J W, Zhou H L, Liu S Y. Encapsulating Pyrene in a Metal-Organic Zeolite for Optical Sensing of Molecular Oxygen[J]. Chem Mater, 2015,27(24):8255-8260. doi: 10.1021/acs.chemmater.5b03955

    7. [7]

      Lin R B, Zhou H L, He C T. Tuning Oxygen-Sensing Behaviour of a Porous Coordination Framework by a Guest Fluorophore[J]. Inorg Chem Front, 2015,2(12):1085-1090. doi: 10.1039/C5QI00157A

    8. [8]

      Liu S Y, Zhou D D, He C T. Flexible, Luminescent Metal-Organic Frameworks Showing Synergistic Solid-Solution Effects on Porosity and Sensitivity[J]. Angew Chem Int Ed, 2016,55(52):16021-16025. doi: 10.1002/anie.201608439

    9. [9]

      Lin R B, Liu S Y, Ye J W. Photoluminescent Metal-Organic Frameworks for Gas Sensing[J]. Adv Sci, 2016,3(7)1500434. doi: 10.1002/advs.201500434

    10. [10]

      Dou Z, Yu J, Cui Y. Luminescent Metal-Organic Framework Films as Highly Sensitive and Fast-Response Oxygen Sensors[J]. J Am Chem Soc, 2014,136(15):5527-5530. doi: 10.1021/ja411224j

    11. [11]

      Xie Z, Ma L, Dekrafft K E. Porous Phosphorescent Coordination Polymers for Oxygen Sensing[J]. J Am Chem Soc, 2010,132(3):922-923. doi: 10.1021/ja909629f

    12. [12]

      Wang J H, Li M, Li D. A Dynamic, Luminescent and Entangled MOF as a Qualitative Sensor for Volatile Organic Solvents and a Quantitative Monitor for Acetonitrile Vapour[J]. Chem Sci, 2013,4(4):1793-1801. doi: 10.1039/c3sc00016h

    13. [13]

      Liu D, Lu K, Poon C. Metal-Organic Frameworks as Sensory Materials and Imaging Agents[J]. Inorg Chem, 2014,53(4):1916-1924. doi: 10.1021/ic402194c

    14. [14]

      Manna B, Chaudhari A K, Joarder B. Dynamic Structural Behavior and Anion-Responsive Tunable Luminescence of a Flexible Cationic Metal-Organic Framework[J]. Angew Chem Int Ed, 2013,52(3):998-1002. doi: 10.1002/anie.201206724

    15. [15]

      Xu R, Wang Y, Duan X. Nanoscale Metal-Organic Frameworks for Ratiometric Oxygen Sensing in Live Cells[J]. J Am Chem Soc, 2016,138(7):2158-2161. doi: 10.1021/jacs.5b13458

    16. [16]

      Ulbricht C, Beyer B, Friebe C. Recent Developments in the Application of Phosphorescent Iridium(Ⅲ) Complex Systems[J]. Adv Mater, 2009,21(44):4418-4441. doi: 10.1002/adma.v21:44

    17. [17]

      Liao P Q, Zhu A X, Zhang W X. Self-catalysed Aerobic Oxidization of Organic Linker in Porous Crystal for On-Demand Regulation of Sorption Behaviours[J]. Nat Commun, 2015,66350. doi: 10.1038/ncomms7350

    18. [18]

      Huang X C, Lin Y Y, Zhang J P. Ligand-Directed Strategy for Zeolite-Type Metal-Organic Frameworks:Zinc(Ⅱ) Imidazolates with Unusual Zeolitic Topologies[J]. Angew Chem Int Ed, 2006,45(10):1557-1559. doi: 10.1002/(ISSN)1521-3773

    19. [19]

      Zhang J P, Zhang Y B, Lin J B. Metal Azolate Frameworks:From Crystal Engineering to Functional Materials[J]. Chem Rev, 2012,112(2):1001-1033. doi: 10.1021/cr200139g

    20. [20]

      Huang X, Zhang J, Chen X. [Zn(bim)2]·(H2O)1.67:A Metal-Organic Open-Framework with Sodalite Topology[J]. Chinese Sci Bull, 2003,48(15):1531-1534.  

    21. [21]

      Phan A, Doonan C J, Uribe-Romo F J. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks[J]. Acc Chem Res, 2010,43(1):58-67. doi: 10.1021/ar900116g

    22. [22]

      Beldon P J, Fábián L, Stein R S. Rapid Room-Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry[J]. Angew Chem Int Ed, 2010,49(50):9640-9643. doi: 10.1002/anie.201005547

    23. [23]

      He C T, Jiang L, Ye Z M. Exceptional Hydrophobicity of a Large-Pore Metal-Organic Zeolite[J]. J Am Chem Soc, 2015,137(22):7217-7223. doi: 10.1021/jacs.5b03727

    24. [24]

      Zhu Y, Ciston J, Zheng B. Unravelling Surface and Interfacial Structures of a Metal-Organic Framework by Transmission Electron Microscopy[J]. Nat Mater, 2017,16(5):532-536. doi: 10.1038/nmat4852

    25. [25]

      Trickett C A, Gagnon K J, Lee S. Definitive Molecular Level Characterization of Defects in UiO-66 Crystals[J]. Angew Chem Int Ed, 2015,54(38):11162-11167. doi: 10.1002/anie.201505461

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    7. [7]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    12. [12]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    13. [13]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    14. [14]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

Metrics
  • PDF Downloads(4)
  • Abstract views(1176)
  • HTML views(415)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return