Citation: DU Xiangsha, LI Haiyang, LIU Heng, LI Genheng, LI Linke, ZANG Shuangquan. Multi-Functional Viologen-Based Eu(Ⅲ) Complex with Photoswitchable Luminescence, Nonlinear Optical Properties and Photovoltaic Activity[J]. Chinese Journal of Applied Chemistry, ;2017, 34(9): 1024-1034. doi: 10.11944/j.issn.1000-0518.2017.09.170160 shu

Multi-Functional Viologen-Based Eu(Ⅲ) Complex with Photoswitchable Luminescence, Nonlinear Optical Properties and Photovoltaic Activity

  • Corresponding author: LI Linke, lilinke@zzu.edu.cn ZANG Shuangquan, zangsqzg@zzu.edu.cn
  • Received Date: 16 May 2017
    Revised Date: 15 June 2016
    Accepted Date: 30 June 2016

    Fund Project: the National Natural Science Foundation of China 21371153the National Natural Science Foundation of China 20901070Supported by the National Natural Science Foundation of China(No.21371153, No.20901070), Program for Science & Key Scientific and Technological Project of Henan Province(No.132102210411), Key Scientific Research Project Plan in Colleges and Universities of Henan Province(No.16A150045)Program for Science & Key Scientific and Technological Project of Henan Province 132102210411Key Scientific Research Project Plan in Colleges and Universities of Henan Province 16A150045

Figures(8)

  • The solvothermal reaction of a viologen-functionalized aromatic dicarboxylate ligand 1-(3, 5-dicarboxybenzyl)-4, 4'-bipyridinium nitrate(H2L+NO3-) with Eu(Ⅲ) leads to the formation of a new metal-organic complex {[Eu(μ2-OH)(L)(HCO2)]·H2O}n(1), in which the formate anions come from the in situ decomposition of solvent dimethylformamide(DMF). Single-crystal X-ray analysis revealed that complex 1 has chirality and diaplays a two-dimensional layer structure. Complex 1 manifests fast photoresponsive and reversibile photochromic properties. It gives an eye-detectable color change from pale-yellow to dark green upon exposure to light, and the coloring/fading processes can repeat several cycles. The structural analysis demonstrated that the electrons transfer from carboxylate donors to viologen acceptor as well as the π....π interaction offers reasonable electron-transfer pathways for the photochromic process. Interestingly, the synthesized solid-state chiral crystalline material not only exhibits tunable luminescence in response to light, but also shows photoswitching nonlinear optical(NLO) activity, and the second-harmonic generation(SHG) efficiency is approximately 3.8 times that of potassium dihydrogen phosphate(KDP) in the same particle size. Moreover, surface photovoltage spectroscopy(SPS) of complex 1 has been investigated and the result indicates it exhibits interesting photovoltaic activity.
  • 加载中
    1. [1]

      Ungur L, Lin S Y, Tang J. Single-Molecule Toroics in Ising-type Lanthanide Molecular Clusters[J]. Chem Soc Rev, 2014,43(20):6894-6905. doi: 10.1039/C4CS00095A

    2. [2]

      Bianchi A, Delgado-Pinar E, García-España E. Highlights of Metal Ion-based Photochemical Switches[J]. Coord Chem Rev, 2014,260:156-215. doi: 10.1016/j.ccr.2013.09.023

    3. [3]

      Irie M, Fukaminato T, Matsuda K. Photochromism of Diarylethene Molecules and Crystals:Memories, Switches, and Actuators[J]. Chem Rev, 2014,114(24):12174-12277. doi: 10.1021/cr500249p

    4. [4]

      Ratera I, Veciana J. Playing with Organic Radicals as Building Blocks for Functional Molecular Materials[J]. J Chem Soc Rev, 2012,41:303-349. doi: 10.1039/C1CS15165G

    5. [5]

      Zhang T, Lin W. Metal-Organic Frameworks for Artificial Photosynthesis and Photocatalysis[J]. Chem Soc Rev, 2014,43:5982-5993. doi: 10.1039/C4CS00103F

    6. [6]

      Guldi D M, Rahman G M A, Sgobba V. Multifunctional Molecular Carbon Materials from Fullerenes to Carbon Nanotubes[J]. Chem Soc Rev, 2006,35(5):471-487. doi: 10.1039/b511541h

    7. [7]

      Train C, Gruselle M, Verdaguer M. The Fruitful Introduction of Chirality and Control of Absolute Configurations in Molecular Magnets[J]. Chem Soc Rev, 2011,40(6):3297-3312. doi: 10.1039/c1cs15012j

    8. [8]

      Li P X, Wang M S, Cai L Z. Rare Electron-Transfer Photochromic and Thermochromic Difunctional Compounds[J]. J Mater Chem C, 2015,3(2):253-256. doi: 10.1039/C4TC01315H

    9. [9]

      Liao J Z, Zhang H L, Wang S S. Multifunctional Radical-Doped Polyoxometalate-Based Host-Guest Material:Photochromism and Photocatalytic Activity[J]. Inorg Chem, 2015,54(9):4345-4350. doi: 10.1021/acs.inorgchem.5b00041

    10. [10]

      Deng H, Doonan C J, Furukawa H. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks[J]. Science, 2010,327(5697):846-850.  

    11. [11]

      Ryder M R, Tan J C. Nanoporous Metal Organic Framework Materials for Smart Applications[J]. J Mater Sci Technol, 2014,30(13):1598-1612. doi: 10.1179/1743284714Y.0000000550

    12. [12]

      Wang M S, Xu G, Zhang Z J. Inorganic-Organic Hybrid Photochromic Materials[J]. Chem Commun, 2010,46(3):361-376. doi: 10.1039/B917890B

    13. [13]

      Pardo R, Zayat M, Levy D. Photochromic Organic-Inorganic Hybrid Materials[J]. Chem Soc Rev, 2011,40(2):672-687. doi: 10.1039/c0cs00065e

    14. [14]

      Yao Q X, Ju Z F, Jin X H. Novel Polythreaded Coordination Polymer:From an Armed-Polyrotaxane Sheet to a 3D Polypseudorotaxane Array, Photo-and Thermochromic Behaviors[J]. Inorg Chem, 2009,48(4):1266-1268. doi: 10.1021/ic8021672

    15. [15]

      Yao Q X, Pan L, Ju X H. Bipyridinium Array-Type Porous Polymer Displaying Hydrogen Storage, Charge-Transfer-Type Guest Inclusion, and Tunable Magnetic Properties[J]. Chem-Eur J, 2009,15(44):11890-11897. doi: 10.1002/chem.v15:44

    16. [16]

      Zhang C H, Sun L B, Zhang C Q. Novel Photo-and/or Thermochromic MOFs Derived from Bipyridinium Carboxylate Ligands[J]. Inorg Chem Front, 2016,3(6):814-820. doi: 10.1039/C6QI00013D

    17. [17]

      Aulakh D, Nicoletta A P, Varghese J R. The Structural Diversity and Properties of Nine New Viologen Based Zwitterionic Metal-Organic Frameworks[J]. CrystEngComm, 2016,18(12):2189-2202. doi: 10.1039/C6CE00284F

    18. [18]

      Deska M, Kozlowska J, Sliwa W. Rotaxanes and Pseudorotaxanes with Threads Containing Viologen Units[J]. ARKIVOC, 2013:66-100.

    19. [19]

      Higuchi M, Nakamura K, Horike S. Design of Flexible Lewis Acidic Sites in Porous Coordination Polymers by Using the Viologen Moiety[J]. Angew Chem, 2012,124(33):8494-8497. doi: 10.1002/ange.v124.33

    20. [20]

      Lin J B, Shimizu G K H. Pyridinium Linkers and Mixed Anions in Cationic Metal-Organic Frameworks[J]. Inorg Chem Front, 2014,1(4):302-305. doi: 10.1039/C3QI00065F

    21. [21]

      Aulakh D, Varghese J R, Wriedt M. A New Design Strategy to Access Zwitterionic Metal Organic Frameworks from Anionic Viologen Derivates[J]. Inorg Chem, 2015,54(4):1756-1764. doi: 10.1021/ic5026813

    22. [22]

      Sun J K, Zhang J. Functional Metal Bipyridinium Frameworks:Self-Assembly and Applications[J]. Dalton Trans, 2015,44:19041-19055. doi: 10.1039/C5DT03195H

    23. [23]

      Sun J K, Wang P, Yao Q X. Solvent-and Anion-Controlled Photochromism of Viologen-Based Metal-Organic Hybrid Materials[J]. J Mater Chem, 2012,22(24):12212-12219. doi: 10.1039/c2jm30558e

    24. [24]

      Sun J K, Cai L X, Chen Y J. Reversible Luminescence Switch in a Photochromic Metal Organic Framework[J]. Chem Commun, 2011,47(24):6870-6872. doi: 10.1039/c1cc11550b

    25. [25]

      Chen H, Zheng G, Li M. Photo-and Thermo-Activated Electron Transfer System Based on a Luminescent Europium Organic Framework with Spectral Response from UV to Visible Range[J]. Chem Commun, 2014,50(88):13544-13546. doi: 10.1039/C4CC05975A

    26. [26]

      Sun J K, Chen C, Cai L X. Mechanical Grinding of a Single-Crystalline Metal Mrganic Framework Triggered Emission with Tunable Violet-to-Orange Luminescence[J]. Chem Commun, 2014,50(100):15956-15959. doi: 10.1039/C4CC08316D

    27. [27]

      Jin X H, Sun J K, Cai L X. 2D Flexible Metal Organic Frameworks with[J]. Chem Commun, 2011,47(9):2667-2669. doi: 10.1039/c0cc04084c

    28. [28]

      Mitchell R H, Brkic Z, Sauro V A. A Photochromic, Electrochromic, Thermochromic Ru Complexed Benzannulene:An Organometallic Example of the Dimethyldihydropyrene-Metacyclophanediene Valence Isomerization[J]. J Am Chem Soc, 2003,125(25):7581-7585. doi: 10.1021/ja034807d

    29. [29]

      Li M H, Keller P. Stimuli-Responsive Polymer Vesicles[J]. Soft Matter, 2009,5:927-937. doi: 10.1039/b815725a

    30. [30]

      Jaffe A, Lin Y, Mao W L. Pressure-Induced Conductivity and Yellow-to-Black Piezochromism in a Layered Cu-Cl Hybrid Perovskite[J]. J Am Chem Soc, 2015,137(4):1673-1678. doi: 10.1021/ja512396m

    31. [31]

      Wu J H, Liou G S. High-Performance Electrofluorochromic Devices Based on Electrochromism and Photoluminescence-Active Novel Poly(4-Cyanotriphenylamine)[J]. Adv Funct Mater, 2014,24(41):6422-6429. doi: 10.1002/adfm.v24.41

    32. [32]

      Yao J, Hashimoto K, Fujishima A. Photochromism Induced in an Electrolytically Pretreated Mo03 Thin Film by Visible Light[J]. Nature, 1992,355:624-626. doi: 10.1038/355624a0

    33. [33]

      Irie M. Diarylethenes for Memories and Switches[J]. Chem Rev, 2000,100(5):1685-1716. doi: 10.1021/cr980069d

    34. [34]

      de Jong J J D, Lucas L N, Kellogg R M. Astronomers Attempt to Stay in the Big League[J]. Science, 2004,304(5669):378-380. doi: 10.1126/science.304.5669.378

    35. [35]

      Li H Y, Xu H, Zang S Q. A Viologen-functionalized Chiral Eu-MOF as a Platform for Multifunctional Switchable Material[J]. Chem Commun, 2016,52(3):525-528. doi: 10.1039/C5CC08168H

    36. [36]

      Li H Y, Wei Y L, Dong X Y. Novel Tb-MOF Embedded with Viologen Species for Multi-Photofunctionality:Photochromism, Photomodulated Fluorescence, and Luminescent pH Sensing[J]. Chem Mater, 2015,27(4):1327-1331. doi: 10.1021/cm504350q

    37. [37]

      Lvaro Á, Ferrer M, Fornés V B. A Periodic Mesoporous Organosilica Containing Electron Acceptor Viologen Units[J]. Chem Commun, 2001,24:2546-2547.  

    38. [38]

      Park Y S, Um S Y, Yoon K B. Charge-Transfer Interaction of Methyl Viologen with Zeolite Framework and Dramatic Blue Shift of Methyl Viologen-Arene Charge-Transfer Band upon Increasing the Size of Alkali Metal Cation[J]. J Am Chem Soc, 1999,121(13):3193-3200. doi: 10.1021/ja980912p

    39. [39]

      Berthet J J, Micheau C, Metelitsa A. Multistep Thermal Relaxation of Photoisomers in Polyphotochromic Molecules[J]. J Phys Chem A, 2004,108(50):10934-10940. doi: 10.1021/jp046864e

    40. [40]

      Sheldrick G M. Acta Crystallogr, Sect. A:Fundam Crystallogr[M]. 1990, 46:457.

    41. [41]

      Sheldrick G M. SHELXS-97, Program for Solution of Crystal Structures[M]. University of G ttingen, Germany, 1997.

    42. [42]

      Sheldrick G M. SHELXL-97, Program for Refinement of Crystal Structures[M]. University of G ttingen, Germany, 1997.

    43. [43]

      Tan Y, Fu Z Y, Zeng Y. Highly Stable Photochromic Crystalline Material Based on a Close-Packed Layered Metal-Viologen Coordination Polymer[J]. J Mater Chem, 2012,22(34):17452-17455. doi: 10.1039/c2jm34341j

    44. [44]

      Toma O, Mercier N, Allain M. Photo-and Thermochromic and Adsorption Properties of Porous Coordination Polymers Based on Bipyridinium Carboxylate Ligands[J]. Inorg Chem, 2015,54(18):8923-8930. doi: 10.1021/acs.inorgchem.5b00975

    45. [45]

      Matsunaga Y, Goto K, Kubono K. Photoinduced Color Change and Photomechanical Effect of Naphthalene Diimides Bearing Alkylamine Moieties in the Solid State[J]. Chem Eur J, 2014,20(24):7309-7316. doi: 10.1002/chem.201304849

    46. [46]

      Xu G, Guo G C, Wang M S. Photochromism of a Methyl Viologen Bismuth(Ⅲ) Chloride:Structural Variation before and after UV Irradiation[J]. Angew Chem Int Ed, 2007,46(18):3249-3251. doi: 10.1002/(ISSN)1521-3773

    47. [47]

      Xu G, Guo G C, Guo J S. Photochromic Inorganic-Organic Hybrid:A New Approach for Switchable Photoluminescence in the Solid State and Partial Photochromic Phenomenon[J]. Dalton Trans, 2010,39(37):8688-8692. doi: 10.1039/c0dt00471e

    48. [48]

      Lin R G, Xu G, Wang M S. Improved Photochromic Properties on Viologen-Based Inorganic-Organic Hybrids by Using π-Conjugated Substituents as Electron Donors and Stabilizers[J]. Inorg Chem, 2013,52(3):1199-1205. doi: 10.1021/ic301181b

    49. [49]

      Sun J K, Ji M, Chen C. A Charge-Polarized Porous Metal-Organic Framework for Gas Chromatographic Separation of Alcohols from Water[J]. Chem Commun, 2013,49(16):1624-1626. doi: 10.1039/c3cc38260e

    50. [50]

      Hutchison G R, Ratner M A, Marks T J. Intermolecular Charge Transfer Between Heterocyclic Oligomers. Effects of Heteroatom and Molecular Packing on Hopping Transport in Organic Semiconductors[J]. J Am Chem Soc, 2005,127(48):16866-16881. doi: 10.1021/ja0533996

    51. [51]

      Jhang P C, Chuang N T, Wang S L. Layered Zinc Phosphates with Photoluminescence and Photochromism:Chemistry in Deep Eutectic Solvents[J]. Angew Chem Int Ed, 2010,49(25):4200-4204. doi: 10.1002/anie.v49:25

    52. [52]

      Lin R G, Xu G, Lu G. Photochromic Hybrid Containing In Situ-Generated Benzyl Viologen and Novel Trinuclear[Bi3Cl14]5-:Improved Photoresponsive Behavior by the π…π[JG)] Interactions and Size Effect of Inorganic Oligomer[J]. Inorg Chem, 2014,53(11):5538-5545. doi: 10.1021/ic5002144

    53. [53]

      Yoshikawa H, Nishikiori S I, Watanabe T. Polycyano-Polycadmate Host Clathrates Including a Methylviologen Dication. Syntheses, Crystal Structures and Photo-Induced Reduction of Methylviologen Dication[J]. J Chem Soc Dalton Trans, 2002,43(9):1907-1917.

    54. [54]

      Jin X H, Sun J K, Xu X M. Conformational and Photosensitive Adjustment of the 4, 4'-Bipyridinium in Mn(Ⅱ) Coordination Complexes[J]. Chem Commun, 2010,46(26):4695-4697. doi: 10.1039/c0cc00135j

    55. [55]

      Sava D F, Rohwer L E S, Rodriguez M A. Intrinsic Broad-Band White-Light Emission by a Tuned, Corrugated Metal-Organic Framework[J]. J Am Chem Soc, 2012,134(9):3983-3986. doi: 10.1021/ja211230p

    56. [56]

      Xu H, Cao C S, Zhao B. A Water-Stable Lanthanide-Organic Framework as a Recyclable Luminescent Probe for Detecting Pollutant Phosphorus Anions[J]. Chem Commun, 2015,51:10280-10283. doi: 10.1039/C5CC02596F

    57. [57]

      Xu H, Cao C S, Kang X M. Lanthanide-Based Metal Organic Frameworks as Luminescent Probes[J]. Dalton Trans, 2016,45(45):18003-18017. doi: 10.1039/C6DT02213H

    58. [58]

      Xu H, Zhai B, Cao C S. A Bifunctional Europium-Organic Framework with Chemical Fixation of CO2 and Luminescent Detection of Al3+[J]. Inorg Chem, 2016,55(19):9671-9676. doi: 10.1021/acs.inorgchem.6b01407

    59. [59]

      Li H N, Li H Y, Li L K. Syntheses, Structures, and Photoluminescent Properties of Lanthanide Coordination Polymers Based on a Zwitterionic Aromatic Polycarboxylate Ligand[J]. Cryst Growth Des, 2015,15(9):4331-4340. doi: 10.1021/acs.cgd.5b00625

    60. [60]

      Ma M L, Ji C, Zang S Q. Syntheses, Structures, Tunable Emission and White Light Emitting Eu3+ and Tb3+ Doped Lanthanide Metal Organic Framework Materials[J]. Dalton Trans, 2013,42(29):10579-10586. doi: 10.1039/c3dt50315a

    61. [61]

      Jain K, Pratt G W. Optical Transistor[J]. Appl Phys Lett, 1976,28:719-721. doi: 10.1063/1.88627

    62. [62]

      Zyss J, Chemla D S. Nonlinear Optical Properties of Organic Molecules and Crystals[M]. New York:Academic Press, 1989, 1:23-191.

    63. [63]

      Keszler D A. Synthesis, Crystal Chemistry, and Optical Properties of Metal Borates[J]. Curr Opin Solid State Mater Sci, 1999,4(2):155-162. doi: 10.1016/S1359-0286(99)00011-X

    64. [64]

      Nye J F. Physical Properties of Crystals:Their Representation by Tensors and Matrices[M]. Clarendon, Oxford, 1985.

    65. [65]

      Bella S D. Second-Order Nonlinear Optical Properties of Transition Metal Complexes[J]. Chem Soc Rev, 2001,30(6):355-366. doi: 10.1039/b100820j

    66. [66]

      Li P X, Wang M S, Zhang M J. Electron-Transfer Photochromism to Switch Bulk Second-Order Nonlinear Optical Properties with High Contrast[J]. Angew Chem Int Ed, 2014,53(43):11529-11531. doi: 10.1002/anie.201406554

  • 加载中
    1. [1]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    2. [2]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    3. [3]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    4. [4]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    5. [5]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    6. [6]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    7. [7]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    8. [8]

      Boyuan HuJian ZhangYulin YangYayu DongJiaqi WangWei WangKaifeng LinDebin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933

    9. [9]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    10. [10]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    11. [11]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    12. [12]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    13. [13]

      Lihua GaoYinglei HanChensheng LinHuikang JiangGuang PengGuangsai YangJindong ChenNing Ye . Halogen-assisted octet binding electrons construction of pnictogens towards wide-bandgap nonlinear optical pnictides. Chinese Chemical Letters, 2024, 35(12): 109529-. doi: 10.1016/j.cclet.2024.109529

    14. [14]

      Hongyuan ShaDongling YangYanran ShangZujian WangRongbing SuChao HeXiaoming YangXifa Long . Trithionic guanidine: A novel semi-organic short-wave ultraviolet nonlinear optical sulfate with dimeric heteroleptic tetrahedra. Chinese Chemical Letters, 2025, 36(4): 109730-. doi: 10.1016/j.cclet.2024.109730

    15. [15]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    16. [16]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    17. [17]

      Xin Chen Meng Zhao Yan-Yuan Jia . Stable Eu(III)-based metal-organic framework for fluorescence sensing of benzaldehyde and its analogues. Chinese Journal of Structural Chemistry, 2025, 44(3): 100445-100445. doi: 10.1016/j.cjsc.2024.100445

    18. [18]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    19. [19]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    20. [20]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

Metrics
  • PDF Downloads(6)
  • Abstract views(733)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return