Citation: LI Jianfa, CHEN Xiaoli. Synthesis, Structure and Properties of Binuclear Zinc Complex[Zn(dna)(phen)(H2O)][J]. Chinese Journal of Applied Chemistry, ;2017, 34(8): 912-917. doi: 10.11944/j.issn.1000-0518.2017.08.160462 shu

Synthesis, Structure and Properties of Binuclear Zinc Complex[Zn(dna)(phen)(H2O)]

  • Corresponding author: CHEN Xiaoli, chenxiaoli003@163.com
  • Received Date: 16 November 2016
    Revised Date: 27 December 2016
    Accepted Date: 12 February 2017

    Fund Project: Yulin Science and Technology Project No.GY13-23the National Natural Science Foundation of China No.21101133Supported by the National Natural Science Foundation of China(No.21101133), Yulin Science and Technology Project(No.GY13-23)

Figures(6)

  • A new complex[Zn(dna)(phen)(H2O)] based on 5, 5'-dithiobis(2-nitrobenzoic acid)(H2dna) and 1, 10-phenanthroline(phen), has been hydrothermally synthesized and structurally characterized by elemental analysis, Fourier transform infrared spectrometer, X-ray single crystal diffraction and powder X-ray diffraction. Crystal structural analysis reveals that it crystallizes in monoclinic, space group P21/n, a=1.5312(3) nm, b=1.16054(18) nm, c=1.5609(3) nm, β=110.451(2)°, V=2.5990(7) nm3, Z=4. There is a binuclear ring structure in the complex, and the neighboring binuclear rings are linked into 1D supramolecular chain through hydrogen bonding interaction. The adjacent supramolecular chains are further interconnected by S‥‥O and C-H‥‥π weak interactions resulting a 3D supramolecular structure. The complex after dehydration remains relatively stable until 245~450℃. Then ligands begin to decompose, which shows good thermal stability. The complex displays a strong fluorescence emission maximum at ca. 440 nm upon excitation at 280 nm. The emission peaks of H2dna ligand and the complex are similar. Compared with H2dna ligand, the fluorescence intensity of complex is significantly enhanced.
  • 加载中
    1. [1]

      Rowsell J L C, Yaghi O M. Strategies for Hydrogen Storage in Metal-Organic Frameworks[J]. Angew Chem Int Ed, 2005,44(30):4670-4679. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Leininger S, Olenyuk B, Stang P J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals[J]. Chem Rev, 2000,100(3):853-907. doi: 10.1021/cr9601324

    3. [3]

      Seo J S, Whang D, Lee H. A Homochiral Metal-Organic Porous Material for Enantioselective Separation and Catalysis[J]. Nature, 2000,404(6781):982-986. doi: 10.1038/35010088

    4. [4]

      Sauvage J P. Transition Metal-Containing Rotaxanes and Catenanes in Motion:Toward Molecular Machines and Motors[J]. Acc Chem Res, 1998,31(31):611-619.

    5. [5]

      Tandon S S, Bunge S D, Sanchiz J. Structures and Magnetic Properties of an Antiferromagnetically Coupled Polymeric Copper(Ⅱ) Complex and Ferromagnetically Coupled Hexanuclear Nickel(Ⅱ) Clusters[J]. Inorg Chem, 2012,51(51):3270-3282.

    6. [6]

      Evans O R, Lin W. Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks[J]. Acc Chem Res, 2002,35(7):511-522. doi: 10.1021/ar0001012

    7. [7]

      Rao X T, Song T, Gao J K. A Highly Sensitive Mixed Lanthanide Metal Organic Framework Self-Calibrated Luminescent Thermometer[J]. J Am Chem Soc, 2013,135(41):15559-15564. doi: 10.1021/ja407219k

    8. [8]

      Li H N, Li H Y, Li L K. Syntheses, Structures, and Photoluminescent Properties of Lanthanide Coordination Polymers Based on a Zwitterionic Aromatic Polycarboxylate Ligand[J]. Cryst Growth Des, 2015,15(9):4331-4340. doi: 10.1021/acs.cgd.5b00625

    9. [9]

      Rowsell J L C, Yaghi O M. Metal-organic Frameworks:A New Class of Porous Materials[J]. Micropor Mesopor Mater, 2004,73(1/2):3-14.

    10. [10]

      Dong Z, Zhang W H, Wang Y Y. Three New Zinc(Ⅱ) Coordination Polymers:Modulation of Eextended Structures Driven by Assistant Ligands[J]. Chinese Sci Bull, 2009,54(23):4285-4290.

    11. [11]

      Zang S Q, Su Y, Li Y Z. Assemblies of a New Flexible Multicarboxylate Ligand and d10 Metal Centers Toward the Construction of Homochiral Helical Coordination Polymers:Structures, Luminescence, and NLO-Active Properties[J]. Inorg Chem, 2006,45(1):174-180. doi: 10.1021/ic051502m

    12. [12]

      Zhang X, Hou L, Liu B. Syntheses, Structures, and Luminescent Properties of Six New Zinc(Ⅱ) Coordination Polymers Constructed by Flexible Tetracarboxylate and Various Pyridine Ligands[J]. Cryst Growth Des, 2013,13(7):3177-3187. doi: 10.1021/cg400579w

    13. [13]

      Chen X L, Zhang B, Hu H M. Three Novel Heterobimetallic Cd/Zn-Na Coordination Polymers:Syntheses, Crystal Structure, and Luminescence[J]. Cryst Growth Des, 2008,8(10):3706-3712. doi: 10.1021/cg8003257

    14. [14]

      Sheldridrick G M. SHELXS-97 and SHELXL-97, Program for X-ray Crystal Structure Solution and Refinement[CP], Göttingen University, Germany, 1997.

    15. [15]

      Peng Y, Li G H, Feng S H. Syntheses, Topological Structures and Properties of Six Metal-Organic Frameworks Constructed by the Flexible Tetracarboxylate Ligand[J]. Cryst Eng Comm, 2015,17(16):3162-3170. doi: 10.1039/C5CE00078E

    16. [16]

      Nakamoto K. Translated by HUANG Deru, WANG Renqing. Proofread by LIAO Daiwei. Infrared and Raman Spectra of Inorganic and Complex Compounds[M]. Beijing:Chemicai Industry Press, 1986:235-238(in Chinese).

    17. [17]

      Xiao D R, Li Y G, Wang E B. Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid, 9-Fold Meso Helices, and 17-Fold Interwoven Helices[J]. Inorg Chem, 2007,46(10):4158-4166. doi: 10.1021/ic070054a

    18. [18]

      Valeur B. Molecular Fluorescence: Principles and Applications[M]. Wiley-VCH:Weinheim, 2002:112-116.

    19. [19]

      Wang X L, Qin C, Wang E B. Interlocked and Interdigitated Architectures from Self-Assembly of Long Flexible Ligands and Cadmium Salts[J]. Angew Chem Int Ed, 2004,43(38):5036-5040. doi: 10.1002/(ISSN)1521-3773

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    10. [10]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    16. [16]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    17. [17]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    18. [18]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    19. [19]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(4)
  • Abstract views(1293)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return