Citation: TAN Jiang, TAN Xi, KANG Wenbin, ZHANG Chuhong. Two Dimensional Molybdenum Disulfide/Graphite Composites Prepared by Direct All-Solid-State Ball-Milling for Lithium-Ion Batteries[J]. Chinese Journal of Applied Chemistry, ;2017, 34(7): 810-817. doi: 10.11944/j.issn.1000-0518.2017.07.170100 shu

Two Dimensional Molybdenum Disulfide/Graphite Composites Prepared by Direct All-Solid-State Ball-Milling for Lithium-Ion Batteries

  • Corresponding author: ZHANG Chuhong, chuhong.zhang@scu.edu.cn
  • Received Date: 1 April 2017
    Revised Date: 24 April 2017
    Accepted Date: 28 April 2017

    Fund Project: the Project of State Key Laboratory of Polymer Materials Engineering of Sichuan University SKLPME2014-2-07the National Natural Science Foundation of China 51673123the National Basic Research Program of China 2013CB934700

Figures(5)

  • Two dimensional flaky composites of MoS2/graphite are first prepared via direct all-solid-state ball-milling using commercial molybdenum disulfide(MoS2) and graphite as raw materials. As evidenced from X-ray difraction, scanning electron microscopy and energy dispersive spectrometry, MoS2 and graphite are exfoliated into thin sheets, which entangle uniformly alleviating the agglomeration of MoS2. Thus as-prepared MoS2/graphite composites exhibit significantly improved cycling stability and rate capability. When tested at the current density of 100 mA/g, MoS2/graphite(mass ratio 7:3) composite shows an initial specific discharge capacity of 801 mA·h/g and retains a reversible specific capacity of 694 mA·h/g after 100 cycles, which is much superior to that of bulk MoS2(about 110 mA·h/g remained after 100 cycles). The outstanding electrochemical performance of ball-milled MoS2/graphite composites could be attributed to following reasons:exfoliated graphite sheets not only improve the electrical conductivity of MoS2/graphite composite, but also prevent the agglomeration of MoS2 during the charge/discharge process, which enhances structural stability of the composite electrode. In addition, the technique reported herein also demonstrates a facile and low-cost method for the production of high performance lithium ion battery electrode materials on a large scale.
  • 加载中
    1. [1]

      Wang M, Li G, Xu H. Enhanced Lithium Storage Performances of Hierarchical Hollow MoS2 Nanoparticles Assembled from Nanosheets[J]. ACS Appl Mater Interfaces, 2013,5(3):1003-1008. doi: 10.1021/am3026954

    2. [2]

      Li Z, Xu Z, Tan X. Mesoporous Nitrogen-Rich Carbons Derived from Protein for Ultra-High Capacity Battery Anodes and Supercapacitors[J]. Energy Environ Sci, 2013,6(3):871-878. doi: 10.1039/c2ee23599d

    3. [3]

      Yang L, Wang S, Mao J. Hierarchical MoS2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries[J]. Adv Mater, 2013,25(8):1180-1184. doi: 10.1002/adma.201203999

    4. [4]

      Huang G, Chen T, Chen W. Graphene-Like MoS2/Graphene Composites:Cationic Surfactant-Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium[J]. Small, 2013,9(21):3693-3703. doi: 10.1002/smll.201300415

    5. [5]

      Wang P, Sun H, Ji Y. Three-Dimensional Assembly of Single-Layered MoS2[J]. Adv Mater, 2014,26(6):964-969. doi: 10.1002/adma.v26.6

    6. [6]

      Sen U K, Mitra S. High-rate and High-Energy-Density Lithium-Ion Battery Anode Containing 2D MoS2 Nanowall and Cellulose Binder[J]. ACS Appl Mater Interfaces, 2013,5(4):1240-1247. doi: 10.1021/am3022015

    7. [7]

      Liu H, Su D, Zhou R. Highly Ordered Mesoporous MoS2 with Expanded Spacing of the (002) Crystal Plane for Ultrafast Lithium Ion Storage[J]. Adv Energy Mater, 2012,2(8):970-975. doi: 10.1002/aenm.v2.8

    8. [8]

      Chang K, Chen W. L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries[J]. ACS Nano, 2011,5(6):4720-4728. doi: 10.1021/nn200659w

    9. [9]

      Zhang S, Yu X, Yu H. Growth of Ultrathin MoS2 Nanosheets with Expanded Spacing of (002) Plane on Carbon Nanotubes for High-Performance Sodium-Ion Battery Anodes[J]. ACS Appl Mater Interfaces, 2014,6(24):21880-21885. doi: 10.1021/am5061036

    10. [10]

      Liu Y, Jiao L, Wu Q. Sandwich-Structured Graphene-Like MoS2/C Microspheres for Rechargeable Mg Batteries[J]. J Mater Chem A, 2013,1(19):5822-5826. doi: 10.1039/c3ta10786h

    11. [11]

      Yang L, Wang S, Mao J. Hierarchical MoS2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium-Ion Batteries[J]. Adv Mater, 2013,25(8):1180-1184. doi: 10.1002/adma.201203999

    12. [12]

      Yoo E J, Kim J, Hosono E. Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries[J]. Nano Lett, 2008,8(8):2277-2282. doi: 10.1021/nl800957b

    13. [13]

      Yoshio M, Wang H, Fukuda K. Spherical Carbon-Coated Natural Graphite as a Lithium-Ion Battery-Anode Material[J]. Angew Chem, 2003,115(35):4335-4338. doi: 10.1002/(ISSN)1521-3757

    14. [14]

      Yoshio M, Wang H, Fukuda K. Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium-Ion Battery Anode Material[J]. Electrochem Soc, 2000,147(4):1245-1250. doi: 10.1149/1.1393344

    15. [15]

      Zhao H, Zeng H, Wu Y. Facile Scalable Synthesis and Superior Lithium Storage Performance of Ball-Milled MoS2 Graphite Nanocomposites[J]. J Mater Chem A, 2015,3(19):10466-10470. doi: 10.1039/C5TA00472A

    16. [16]

      Chang K, Chen W, Ma L. Graphene-like MoS2/Amorphous Carbon Composites with High Capacity and Excellent Stability as Anode Materials for Lithium Ion Batteries[J]. J Mater Chem, 2011,21(17):6251-6257. doi: 10.1039/c1jm10174a

    17. [17]

      Duan Z Q, Sun Y C, Liu Y T. Scalable Production of Transition Metal Disulphide/Graphite Nanoflake Composites for High-Performance Lithium Storage[J]. RSC Adv, 2014,4(78):41543-41550. doi: 10.1039/C4RA05640J

    18. [18]

      Lee C, Yan H, Brus L E. Anomalous Lattice Vibrations of Single-and Few-Layer MoS2[J]. ACS Nano, 2010,4(5):2695-2700. doi: 10.1021/nn1003937

    19. [19]

      Lu Y, Yao X, Yin J. MoS2 Nanoflowers Consisting of Nanosheets with a Controllable Interlayer Distance as High-Performance Lithium Ion Battery Anodes[J]. RSC Adv, 2015,5(11):7938-7943. doi: 10.1039/C4RA14026E

    20. [20]

      Liu G, Feng Y, Li Y. Three-Dimensional Multilayer Assemblies of MoS2/Reduced Graphene Oxide for High-Performance Lithium Ion Batteries[J]. Part Part Syst Charact, 2014,32(4):489-497.  

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . 层状MoS2/Ti3C2Tx异质结光热转换材料用于太阳能驱动水蒸发. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    17. [17]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(4)
  • Abstract views(785)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return