Citation: LIANG Yuejian, LAN Yuting, YANG Lulu, KONG Fanbo, LI Juan, SUN Yue. Preparation and Properties of Hemoglobin Imprinted Polymers on Three-Dimensional Nanodendrites[J]. Chinese Journal of Applied Chemistry, ;2017, 34(7): 839-846. doi: 10.11944/j.issn.1000-0518.2017.07.160465 shu

Preparation and Properties of Hemoglobin Imprinted Polymers on Three-Dimensional Nanodendrites

  • Corresponding author: SUN Yue, yuesun@lnnu.edu.cn
  • Received Date: 17 November 2016
    Revised Date: 23 December 2016
    Accepted Date: 20 January 2017

    Fund Project: Project of innovation and Entrepreneurship Program for College Students in Liaoning Province 201510165027Project of Key Laboratory of Liaoning Provincial Department of Education L201683656the National Natural Science Foundation of China 21304041

Figures(5)

  • For sensitive bioassay of hemoglobin(Hb), we synthesized Hb imprinted polymers(PIPs) on the surface of 3D Au/Cu nanodendrites prepared on Au electrode. The 3D Au/Cu nanodendrites were fabricated by electrodeposition performed by chronoamperometry at -0.9 V(vs.SCE) for 400 s in an aqueous electrolyte containing CuSO4·5H2O(0.1 mol/L) and HAuCl4·4H2O(0.025 mol/L). The PIPs was prepared with acrylamide as functional monomer, N, N'-methylenebisacrylamide and Hb as crosslinking agent and the template, respectively. The electrode modified with PIPs was examined by cyclic voltammetry(CV) and scanning electron microscope(SEM). Assays of Hb by differential pulse voltammetry(DPV) with PIPs modified electrode show broader linear range and lower detection limit for Hb determination compared to those similar sensors based on PIPs. The linear range is 1.0×10-14~1.0×10-1 mg/L with a detection limit at 1.9×10-15 mg/L(S/N=3). These results indicate that the 3D Au/Cu nanodendrites greatly improve electron transfer ability of electrodes, and also improve the detection range of electrodes modified with PIPs.
  • 加载中
    1. [1]

      Scheller F W, Bistolas N, Liu S Q. Thirty Years of Haemoglobin Electrochemistry[J]. Adv Colloid Interface Sci, 2005,116(1/3):111-120.  

    2. [2]

      Huang S, Wang L, Huang C. A Carbon Dots Based Fluorescent Probe for Selective and Sensitive Detection of Hemoglobin[J]. Sens Actuators B, 2015,221(12):1215-1222.  

    3. [3]

      Park S, Chmielarz P, Gennaro A. Simplified Electrochemically Mediated Atom Transfer Radical Polymerization Using a Sacrificial Anode[J]. Angew Chem Int Edit, 2015,127(8):2418-2422. doi: 10.1002/ange.201410598

    4. [4]

      WANG Yang, ZHANG Qingwen, REN Yamin. Molecularly Imprinted Polymer Thin Film Based Surface Plasmon Resonance Sensor to Detect Hemoglobin[J]. Chem Res Chinese Univ, 2014,30(1):42-48.  

    5. [5]

      Altintas Z, Gittens M, Guerreiro A. Detection of Waterborne Viruses Using High Affinity Molecularly Imprinted Polymers[J]. Anal Chem, 2015,87(13):6801-6807. doi: 10.1021/acs.analchem.5b00989

    6. [6]

      Pan G Q, Zu B Y, Guo X Z. Preparation of Molecularly Imprinted Polymer Microspheres via Reversible Addition Fragmentation Chain Transfer Precipitation Polymerization[J]. Polymer, 2009,50(13):2819-2825. doi: 10.1016/j.polymer.2009.04.053

    7. [7]

      Milojkovic' S S, Kostoski D, Čomor J J. Radiation Induced Synthesis of Molecularly Imprinted Polymers[J]. Polymer, 1997,38(11):2853-2855. doi: 10.1016/S0032-3861(97)85624-8

    8. [8]

      HAN Jianguang, YAO Wei, LI Guoliang. Synthesis and Adsorption Properties of Molecularly Imprinted Polymers[J]. Chem Ind Eng Prog, 2009,28(3):437-440.  

    9. [9]

      Jiang W, Su H, Huo H. Synthesis and Properties of Surface Molecular Imprinting Adsorbent for Removal of Pb2+[J]. Arch Biochem Biophys, 2010,160(2):467-476.  

    10. [10]

      Lu Y, Yan C L, Gao S Y. Preparation and Recognition of Surface Molecularly Imprinted Core-Shell Microbeads for Protein in Aqueous Solutions[J]. Appl Surf Sci, 2009,255(12):6061-6066. doi: 10.1016/j.apsusc.2008.12.080

    11. [11]

      Chen Y W, Rick J, Chou T C. A Systematic Approach to Forming Micro-Contact Imprints of Creatinekinase[J]. Org Biomol Chem, 2009,7(3):488-494. doi: 10.1039/B813361A

    12. [12]

      YAN Liushui, WNAG Yiming, WANG Zonghua. Preparation and Separation Performance of Monolithic Caffeine Imprinted Capillary Column[J]. Chem J Chinese Univ, 2001,22(12):2008-2010. doi: 10.3321/j.issn:0251-0790.2001.12.029

    13. [13]

      LEI Jiandu, TAN Tianwei. Chiral Separation of Naproxen on Molecular Imprinted Polymers[J]. Mod Chem Ind, 2001,21(8):29-31.  

    14. [14]

      Liu Y, Hoshina K, Haginaka J. Monodispersed, Molecularly Imprinted Polymers for Cinchonidine by Precipitation Polymerization[J]. Talanta, 2010,80(51):1713-1718.  

    15. [15]

      Liu Y, Wang F, Tan T. Rational Design and Study on Recognition Property of Paracetamol-Imprinted Polymer[J]. Appl Biochem Biotechnol, 2010,160(2):328-342. doi: 10.1007/s12010-008-8299-8

    16. [16]

      XIAO Shujuan, LI Hongxia, YU Shouwu. The Extraction of Luteolin Molecularly Imprinted Solid Phase Extraction[J]. Chem Ind Eng Prog, 2010,29(2):293-296.  

    17. [17]

      Sun S, Chen L Z, Shi H J. Magnetic Glass Carbon Electrode, Modified with Magnetic Ferriferrous Oxide Nanoparticles Coated with Molecularly Imprinted Polymer Films for Electrochemical Determination of Bovine Hemoglobin[J]. J Electroanal Chem, 2014,734:18-24. doi: 10.1016/j.jelechem.2014.09.034

    18. [18]

      Kan X, Zong L X, Zhu A H. Molecularly Imprinted Polymers Based Electrochemical Sensor for Bovine Hemoglobin Recognition[J]. Sens Actuators B, 2013,138(22):6962-6968.  

    19. [19]

      Zhang R L, Sheng X, Luo J. Molecularly Imprinted Photo-Sensitive Polyglutamic Acid Nanoparticles for Electrochemical Sensing of Hemoglobin[J]. Microchim Acta, 2015,182(1):175-183.  

    20. [20]

      Hung D P, Bai X T, Zheng LQ. Ultrafast Preparation of Three-Dimensional Dendritic Gold Nanostructures in Aqueous Solution and Their Applications in Catalysis and SERS[J]. J Phys Chem C, 2011,115(30):14641-14647. doi: 10.1021/jp2037284

    21. [21]

      Jung G B, Kim J H, Jin S B. Fabrication of Chitosan-Silver Nanoparticle Hybrid 3D Porous Structure as a SERS Substrate for Biomedical Applications[J]. Appl Surf Sci, 2013,273(2):179-183.  

    22. [22]

      HAO Liang, SU Jiaye, GUO Hongxia. Molecular Dynamics Simulation of Transmembrane Transport of Tubular Charged Nanoparticles in Aqueous Solution[J]. Acta Polym Sin, 2013(12):1561-1566.  

    23. [23]

      Huang J S, Han X Y, Wang D W. Facile Synthesis of Dendritic Gold Nanostructures with Hyperbranched Architectures and Their Electrocatalytic Activity Toward Ethanol Oxidation[J]. ACS Appl Mater Inter, 2013,5(18):9148-9154. doi: 10.1021/am402546p

    24. [24]

      Zhang Y L, Li A Q, Fei Y. Facile and Controlled Electrochemical Route to Three-Dimensional Hierarchical Dendritic Gold Nanostructures[J]. Electrochim Acta, 2013,109(11):136-144.  

    25. [25]

      Wang Y L, Li Y Y, Ma H M. Label-Free Electrochemical Immunosensor with Novel Signal Production and Amplification Strategy Based on Three-Dimensional Pine-Like Au-Cu Nanodendrites[J]. RSC Adv, 2015,5(40):31262-31269. doi: 10.1039/C5RA03407H

    26. [26]

      Fatoni A, Numnuam A, Kanatharana P. A Novel Molecularly Imprinted Chitosan-Acrylamide, Graphene, Ferrocene Composite Cryogel Biosensor Used to Detect Microalbumin[J]. Analyst, 2014,139(23):6160-6167. doi: 10.1039/C4AN01000K

    27. [27]

      Luo J, Jiang S S, Liu X Y. Electrochemical Sensor for Bovine Hemoglobin Based on a Novel Graphene-Molecular Imprinted Polymers Composite as Recognition Element[J]. Sens Actuators B, 2014,203(11):782-789.  

    28. [28]

      Tiwari A, Deshpande S R, Kobayashi H. Detection of p53 Gene Point Mutation Using Sequence-Specific Molecularly Imprinted PoPD Electrode[J]. Biosens Bioelectron, 2012,35(1):224-229. doi: 10.1016/j.bios.2012.02.053

    29. [29]

      Fuertes A B, Valle-Vig n P, Sevilla M. Synthesis of Colloidal Silica Nanoparticles of a Tunable Mesopore Size and Their Application to the Adsorption of Biomolecules[J]. J Colloid Interface Sci, 2010,349(1):173-180. doi: 10.1016/j.jcis.2010.05.041

    30. [30]

      WANG Jinfen, BIAN Chao, TONG Jianhua. Comparison of Two Mercury Free Heavy Metal Micro Sensors Based on Nano Gold Modification[J]. Chinese J Anal Chem, 2012,40(12):1791-1796.  

    31. [31]

      Sun S, Chen L Z, Shi H J. Magnetic Glass Carbon Electrode, Modified with Magnetic Ferriferrous Oxide Nanoparticles Coated with Molecularly Imprinted Polymer Films for Electrochemical Determination of Bovine Hemoglobin[J]. J Electroanal Chem, 2014,734:18-24. doi: 10.1016/j.jelechem.2014.09.034

    32. [32]

      Wang Z H, Li F, Xia J F. An Ionic Liquid-Modified Graphene Based Molecular Imprinting Electrochemical Sensor for Sensitive Detection of Bovine Hemoglobin[J]. Biosens Bioelectron, 2014,61(6):391-396.  

    33. [33]

      Li D Y, He X W, Chen Y. Novel Hybrid Structure Silica/CdTe/Molecularly Imprinted Polymer: Synthesis, Specific Recognition, and Quantitative Fluorescence Detection of Bovine Hemoglobin[J]. ACS Appl Mater Interfaces, 2013,5(23):12609-12616. doi: 10.1021/am403942y

    34. [34]

      Sun Y, Du H Y, Lan Y T. Preparation of Hemoglobin (Hb) Imprinted Polymer by Hb Catalyzed eATRP and Its Application in Biosensor[J]. Biosens Bioelectron, 2015,77(10):894-900.  

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    3. [3]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    4. [4]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    8. [8]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    12. [12]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    15. [15]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    16. [16]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    19. [19]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    20. [20]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

Metrics
  • PDF Downloads(1)
  • Abstract views(486)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return