Synthesis of 2-Oxazoline Derivatives from Ethyl α-Cyanocinnamate Derivatives and N-Bromobenzamide
- Corresponding author: CHEN Zhanguo, chzhg@snnu.edu.cn
Citation:
HUI Wenping, LIU De'e, HOU Dan, CHEN Zhanguo. Synthesis of 2-Oxazoline Derivatives from Ethyl α-Cyanocinnamate Derivatives and N-Bromobenzamide[J]. Chinese Journal of Applied Chemistry,
;2017, 34(7): 757-767.
doi:
10.11944/j.issn.1000-0518.2017.07.160419
Braga A L, Galetto F Z, Taube P S. Mild and Efficient One-Pot Synthesis of Chiral β-Chalcogen Amides via 2-Oxazoline Ring-Opening Reaction Mediated by Indium Metal[J]. J Organomet Chem, 2008,693(24):3563-3566. doi: 10.1016/j.jorganchem.2008.08.031
Reddy L R, Saravanan P, Corey E J. A Simple Stereocontrolled Synthesis of Salinosporamide A[J]. J Am Chem Soc, 2004,126j(20):6230-6231.
Saravanan P, Corey E J. A Short, Stereocontrolled, and Practical Synthesis of Alpha-Methylomuralide, a Potent Inhibitor of Proteasome Function[J]. J Org Chem, 2003,68(7):2760-2764. doi: 10.1021/jo0268916
Kobayashi S, Fujikawa S I, Ohmae M. Enzymatic Synthesis of Chondroitin and Its Derivatives Catalyzed by Hyaluronidase[J]. J Am Chem Soc, 2003,125(47):14357-14369. doi: 10.1021/ja036584x
Hargaden G C, Guiry P. Recent Applications of Oxazoline-containing Ligands in Asymmetric Catalysis[J]. Chem Rev, 2009,109(6):2505-2550. doi: 10.1021/cr800400z
Desimoni G, Faita G, Jrgensen K A. C2-Symmetric Chiral Bis(oxazoline) Ligands in Asymmetric Catalysis[J]. Chem Rev, 2006,106(9):3561-3651. doi: 10.1021/cr0505324
Frump J A. Oxazolines. Their Preparation, Reactions, and Applications[J]. Chem Rev, 1971,71(5):483-506. doi: 10.1021/cr60273a003
Kangani C O, Day B W. A Novel and Direct Synthesis of 1, 3, 4-Oxadiazoles or Oxazolines from Carboxylic Acids Using Cyanuric Chloride/Indium[J]. Tetrahedron Lett, 2009,50(38):5332-5335. doi: 10.1016/j.tetlet.2009.07.032
Zhou P W, Blubaum J E, Bums C T. The Direct Synthesis of 2-Oxazolines from Carboxylic Esters Using Lanthanide Chloride as Catalyst[J]. Tetrahedron Lett, 1997,38(40):7019-7020. doi: 10.1016/S0040-4039(97)01641-9
Ohshima T, Iwasaki T, Mashima K. Direct Conversion of Esters, Lactones, and Carboxylic Acids to Oxazolines Catalyzed by a Tetranuclear Zinc Cluster[J]. Chem Commun, 2006(25):2711-2713. doi: 10.1039/b605066b
Mei L, Hai Z J, Jie S. Modular Synthesis of Oxazolines and Their Derivatives[J]. J Comb Chem, 2009,11(2):220-227. doi: 10.1021/cc8001537
Baltork I M, Moghadam M, Tangestaninejad S. Environmental-Friendly Synthesis of Oxazolines, Imidazolines and Thiazolines Catalyzed by Tungstophosphoric Acid[J]. Catal Commun, 2008,9(6):1153-1161. doi: 10.1016/j.catcom.2007.10.026
Chaudhry P, Schoenen F, Neuenswander B. One-Step Synthesis of Oxazoline and Dihydrooxazine Libraries[J]. J Comb Chem, 2007,9(3):473-476. doi: 10.1021/cc060159t
Schwekendiek K, Glorius F. Efficient Oxidative Synthesis of 2-Oxazolines[J]. Synthesis, 2006(18):2996-3002.
Wuts P G M, Northuis J M, Kwan T A. The Synthesis of Oxazolines Using the Vilsmeier Reagent[J]. J Org Chem, 2000,65(26):9223-9225. doi: 10.1021/jo000664r
Hajra S, Bar S, Sinha D. Stereoselective One-Pot Synthesis of Oxazolines[J]. J Org Chem, 2008,73(11)432014322.
Minakata S, Morino Y, Ide T. Direct Synthesis of Oxazolines from Olefins and Amides Using t-BuOI[J]. Chem Commun, 2007(31):3279-3281. doi: 10.1039/b706572h
Chen Z G, Wang Y, Wei J F. K3PO4-catalyzed Regiospecific Aminobrominationof β-Nitrostyrene Derivatives with N-Bromoacetamide as Aminobrominating Agent[J]. J Org Chem, 2010,75(6):2085-2088. doi: 10.1021/jo9026879
Chen Z G, Zhao P F, Wang Y. Aminobromination of β-Nitrostyrene Derivatives with N, N-Dibromourethane as the Aminobrominating Reagent[J]. Eur J Org Chem, 2011:5887-5893.
CHEN Zhanguo, WANG Yingjie, LIU De'e. α, β-Vicinal Bromoamine Compounds Converted into α, β-Dehydroamino Derivatives Promoted by Combination of Potassium Carbonate and Thiouea in Water[J]. Chem J Chinese Univ, 2014,35(7):1458-1464. doi: 10.7503/cjcu20131129
Chen Z G, Liu Y L, Hu J L. Aminobromination of Ethyl α-Cyanocinnamate Derivatives with 1, 3-Dibromo-5, 5-dimethylhydantoin(DBDMH) as Nitrogen and Halogen Sources[J]. Chem Res Chinese Univ, 2015,31(1):65-70. doi: 10.1007/s40242-015-4341-x
LIU Yali, LIU De'e, DU Manfei. High Regioselective Aminobromination of β-Nitrostyrene Derivatives with 1, 3-Dibromo-5, 5-dimethyl Hydantoin[J]. Chem J Chinese Univ, 2015,36(6):1117-1125.
Chen Z G, Du M F, Xia W. One-Pot Synthesis of α, β-Dehydroamino Derivatives from β, β-Dicyanostyrene with 1, 3-Dibromo-5, 5-Dimethylhydantoin Promoted by Mild Base[J]. Chem Res Chinese Univ, 2016,32(1):68-75. doi: 10.1007/s40242-016-5233-4
Sun Q, Shi L X, Ge Z M. An Efficient and Green Procedure for the Knoevenagel Condensation Catalyzed by Urea[J]. Chinese J Chem, 2005,23(6):745-748. doi: 10.1002/(ISSN)1614-7065
Rao P S, Venkataratnam R V. Zinc Chloride as a New Catalyst for Knoevenagel Condensation[J]. Tetrahedron Lett, 1991,32(41):5821-5822. doi: 10.1016/S0040-4039(00)93564-0
Gomes M N, De O C M A, Garrote C F D. Condensation of Ethyl Cyanoacetate with Aromatic Aldehydes in Water, Catalyzed by Morpholine[J]. Synth Commun, 2011,41(1):52-57.
Yue C B, Mao A Q, Wei Y Y. Knoevenagel Condensation Reaction Catalyzed by Task-Specific Ionic Liquid under Solvent-free Conditions[J]. Catal Commun, 2008,9(7):1571-1574. doi: 10.1016/j.catcom.2008.01.002
Li G W, Xiao J, Zhang W Q. Knoevenagel Condensation Catalyzed by a Tertiary-Amine Functionalized Polyacrylonitrile Fiber[J]. Green Chem, 2011,13(7):1828-1836. doi: 10.1039/c0gc00877j
Rong L G, Li X Y, Wang H Y. Efficient Green Procedure for the Knoevenagel Condensation under Solvent-Free Conditions[J]. Synth Commun, 2006,36(16):2407-2412. doi: 10.1080/00397910600640289
Cao Y Q, Dai Z, Zhang R. A Practical Knoevenagel Condensation Catalyzed by PEG-400 and Anhydrous K2CO3 without Solvent[J]. Synth Commun, 2004,34(16):2965-2971. doi: 10.1081/SCC-200026650
Sandhar R K, Sharma J R, Manrao M R. Reaction of Active Methylene Compounds with 4-Fluorobenzalanilines and Antifungal Potential of the Products[J]. J Indian Chem Soc, 2006,83(3):263-265.
Zabicky J. The Kinetics and Mechanism of Carbonyl-Methylene Condensation Reactions XI.Stereochemistry of the Products[J]. J Chem Soc, 1961:683-687.
Hopkins C Y, Chisholm M, Michael R. α-Cyano-β-Arylacrylic Acids[J]. Can J Res, Sect B:Chem Sci, 1945,23B:84-87.
Kajigaeshi S, Nakagawa T, Fujiaki S. Synthesis of Novel Nickel-Hectorite Inorganic Complexes[J]. Chem Lett, 1988,17(12):2045-2046. doi: 10.1246/cl.1988.2045
Caixia Lin , Ting Liu , Zhaojiang Shi , Hong Yan , Keyin Ye , Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Lirui Shen , Kun Liu , Ying Yang , Dongwan Li , Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
Yanglin Jiang , Mingqing Chen , Min Liang , Yige Yao , Yan Zhang , Peng Wang , Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027
Yuan Zheng , Quan Lan , Zhenggen Zha , Lingling Li , Jun Jiang , Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
Shuying Zhu , Shuting Wu , Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117
Ruitong Zhang , Zhiqiang Zeng , Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004
Meijin Li , Xirong Fu , Xue Zheng , Yuhan Liu , Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027
Jiaojiao Yu , Bo Sun , Na Li , Cong Wen , Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177
Xiaofeng Xia , Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063
Ping Song , Nan Zhang , Jie Wang , Rui Yan , Zhiqiang Wang , Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046