Citation: HUI Wenping, LIU De'e, HOU Dan, CHEN Zhanguo. Synthesis of 2-Oxazoline Derivatives from Ethyl α-Cyanocinnamate Derivatives and N-Bromobenzamide[J]. Chinese Journal of Applied Chemistry, ;2017, 34(7): 757-767. doi: 10.11944/j.issn.1000-0518.2017.07.160419 shu

Synthesis of 2-Oxazoline Derivatives from Ethyl α-Cyanocinnamate Derivatives and N-Bromobenzamide

  • Corresponding author: CHEN Zhanguo, chzhg@snnu.edu.cn
  • Received Date: 18 October 2016
    Revised Date: 23 December 2016
    Accepted Date: 21 February 2017

    Fund Project: the National Natural Science Foundation of China 20572066the Natural Science Foundation of Shaanxi Province 2009JM2001the Innovation Foundation of Postgraduate Cultivation of Shaanxi Normal University 2008CXB009

Figures(8)

  • 2-Oxazoline derivative belongs to an important class of heterocyclic compounds, new synthetic method and new 2-oxazoline derivatives are eagerly desired. In order to develop a new protocol for the synthesis of deferent structural 2-oxazoline derivatives, a method from ethyl α-cyanocinnamate derivatives and N-bromobenzamide has been explored. The structures of all eleven synthesized products were confirmed by proton nuclear magnetic resonance spectroscopy(1H NMR), and mass spectrometry(MS). The results show that a series of ethyl α-cyanocinnamate derivatives(3a~3k) can be smoothly converted into corresponding 2-oxazoline derivatives(5a~5k). When Na2CO3 was used as the promoter in acetone at room temperature, the corresponding products were obtained in high yield(up to 90%). Not only can ethyl α-cyanocinnamate derivatives be used as substrate, but also ethyl α-carbethoxy-cyanocinnamate(6) can be employed as the substrate, too. Experiment results indicate that N-bromo-p-nitrobenzamide(8) and N-bromoacetamide(9) can tolerate this reaction except N-bromobenzamide(4). Above results indicate that the easy and efficient protocol has application in a large scope of electron-deficient olefins and N-bromoamide. A possible mechanism was proposed which can explain well the full regiospecificity of the reaction.
  • 加载中
    1. [1]

      Braga A L, Galetto F Z, Taube P S. Mild and Efficient One-Pot Synthesis of Chiral β-Chalcogen Amides via 2-Oxazoline Ring-Opening Reaction Mediated by Indium Metal[J]. J Organomet Chem, 2008,693(24):3563-3566. doi: 10.1016/j.jorganchem.2008.08.031

    2. [2]

      Reddy L R, Saravanan P, Corey E J. A Simple Stereocontrolled Synthesis of Salinosporamide A[J]. J Am Chem Soc, 2004,126j(20):6230-6231.

    3. [3]

      Saravanan P, Corey E J. A Short, Stereocontrolled, and Practical Synthesis of Alpha-Methylomuralide, a Potent Inhibitor of Proteasome Function[J]. J Org Chem, 2003,68(7):2760-2764. doi: 10.1021/jo0268916

    4. [4]

      Kobayashi S, Fujikawa S I, Ohmae M. Enzymatic Synthesis of Chondroitin and Its Derivatives Catalyzed by Hyaluronidase[J]. J Am Chem Soc, 2003,125(47):14357-14369. doi: 10.1021/ja036584x

    5. [5]

      Hargaden G C, Guiry P. Recent Applications of Oxazoline-containing Ligands in Asymmetric Catalysis[J]. Chem Rev, 2009,109(6):2505-2550. doi: 10.1021/cr800400z

    6. [6]

      Desimoni G, Faita G, Jrgensen K A. C2-Symmetric Chiral Bis(oxazoline) Ligands in Asymmetric Catalysis[J]. Chem Rev, 2006,106(9):3561-3651. doi: 10.1021/cr0505324

    7. [7]

      Frump J A. Oxazolines. Their Preparation, Reactions, and Applications[J]. Chem Rev, 1971,71(5):483-506. doi: 10.1021/cr60273a003

    8. [8]

      Kangani C O, Day B W. A Novel and Direct Synthesis of 1, 3, 4-Oxadiazoles or Oxazolines from Carboxylic Acids Using Cyanuric Chloride/Indium[J]. Tetrahedron Lett, 2009,50(38):5332-5335. doi: 10.1016/j.tetlet.2009.07.032

    9. [9]

      Zhou P W, Blubaum J E, Bums C T. The Direct Synthesis of 2-Oxazolines from Carboxylic Esters Using Lanthanide Chloride as Catalyst[J]. Tetrahedron Lett, 1997,38(40):7019-7020. doi: 10.1016/S0040-4039(97)01641-9

    10. [10]

      Ohshima T, Iwasaki T, Mashima K. Direct Conversion of Esters, Lactones, and Carboxylic Acids to Oxazolines Catalyzed by a Tetranuclear Zinc Cluster[J]. Chem Commun, 2006(25):2711-2713. doi: 10.1039/b605066b

    11. [11]

      Mei L, Hai Z J, Jie S. Modular Synthesis of Oxazolines and Their Derivatives[J]. J Comb Chem, 2009,11(2):220-227. doi: 10.1021/cc8001537

    12. [12]

      Baltork I M, Moghadam M, Tangestaninejad S. Environmental-Friendly Synthesis of Oxazolines, Imidazolines and Thiazolines Catalyzed by Tungstophosphoric Acid[J]. Catal Commun, 2008,9(6):1153-1161. doi: 10.1016/j.catcom.2007.10.026

    13. [13]

      Chaudhry P, Schoenen F, Neuenswander B. One-Step Synthesis of Oxazoline and Dihydrooxazine Libraries[J]. J Comb Chem, 2007,9(3):473-476. doi: 10.1021/cc060159t

    14. [14]

      Schwekendiek K, Glorius F. Efficient Oxidative Synthesis of 2-Oxazolines[J]. Synthesis, 2006(18):2996-3002.  

    15. [15]

      Wuts P G M, Northuis J M, Kwan T A. The Synthesis of Oxazolines Using the Vilsmeier Reagent[J]. J Org Chem, 2000,65(26):9223-9225. doi: 10.1021/jo000664r

    16. [16]

      Hajra S, Bar S, Sinha D. Stereoselective One-Pot Synthesis of Oxazolines[J]. J Org Chem, 2008,73(11)432014322.  

    17. [17]

      Minakata S, Morino Y, Ide T. Direct Synthesis of Oxazolines from Olefins and Amides Using t-BuOI[J]. Chem Commun, 2007(31):3279-3281. doi: 10.1039/b706572h

    18. [18]

      Chen Z G, Wang Y, Wei J F. K3PO4-catalyzed Regiospecific Aminobrominationof β-Nitrostyrene Derivatives with N-Bromoacetamide as Aminobrominating Agent[J]. J Org Chem, 2010,75(6):2085-2088. doi: 10.1021/jo9026879

    19. [19]

      Chen Z G, Zhao P F, Wang Y. Aminobromination of β-Nitrostyrene Derivatives with N, N-Dibromourethane as the Aminobrominating Reagent[J]. Eur J Org Chem, 2011:5887-5893.  

    20. [20]

      CHEN Zhanguo, WANG Yingjie, LIU De'e. α, β-Vicinal Bromoamine Compounds Converted into α, β-Dehydroamino Derivatives Promoted by Combination of Potassium Carbonate and Thiouea in Water[J]. Chem J Chinese Univ, 2014,35(7):1458-1464. doi: 10.7503/cjcu20131129

    21. [21]

      Chen Z G, Liu Y L, Hu J L. Aminobromination of Ethyl α-Cyanocinnamate Derivatives with 1, 3-Dibromo-5, 5-dimethylhydantoin(DBDMH) as Nitrogen and Halogen Sources[J]. Chem Res Chinese Univ, 2015,31(1):65-70. doi: 10.1007/s40242-015-4341-x

    22. [22]

      LIU Yali, LIU De'e, DU Manfei. High Regioselective Aminobromination of β-Nitrostyrene Derivatives with 1, 3-Dibromo-5, 5-dimethyl Hydantoin[J]. Chem J Chinese Univ, 2015,36(6):1117-1125.  

    23. [23]

      Chen Z G, Du M F, Xia W. One-Pot Synthesis of α, β-Dehydroamino Derivatives from β, β-Dicyanostyrene with 1, 3-Dibromo-5, 5-Dimethylhydantoin Promoted by Mild Base[J]. Chem Res Chinese Univ, 2016,32(1):68-75. doi: 10.1007/s40242-016-5233-4

    24. [24]

      Sun Q, Shi L X, Ge Z M. An Efficient and Green Procedure for the Knoevenagel Condensation Catalyzed by Urea[J]. Chinese J Chem, 2005,23(6):745-748. doi: 10.1002/(ISSN)1614-7065

    25. [25]

      Rao P S, Venkataratnam R V. Zinc Chloride as a New Catalyst for Knoevenagel Condensation[J]. Tetrahedron Lett, 1991,32(41):5821-5822. doi: 10.1016/S0040-4039(00)93564-0

    26. [26]

      Gomes M N, De O C M A, Garrote C F D. Condensation of Ethyl Cyanoacetate with Aromatic Aldehydes in Water, Catalyzed by Morpholine[J]. Synth Commun, 2011,41(1):52-57.  

    27. [27]

      Yue C B, Mao A Q, Wei Y Y. Knoevenagel Condensation Reaction Catalyzed by Task-Specific Ionic Liquid under Solvent-free Conditions[J]. Catal Commun, 2008,9(7):1571-1574. doi: 10.1016/j.catcom.2008.01.002

    28. [28]

      Li G W, Xiao J, Zhang W Q. Knoevenagel Condensation Catalyzed by a Tertiary-Amine Functionalized Polyacrylonitrile Fiber[J]. Green Chem, 2011,13(7):1828-1836. doi: 10.1039/c0gc00877j

    29. [29]

      Rong L G, Li X Y, Wang H Y. Efficient Green Procedure for the Knoevenagel Condensation under Solvent-Free Conditions[J]. Synth Commun, 2006,36(16):2407-2412. doi: 10.1080/00397910600640289

    30. [30]

      Cao Y Q, Dai Z, Zhang R. A Practical Knoevenagel Condensation Catalyzed by PEG-400 and Anhydrous K2CO3 without Solvent[J]. Synth Commun, 2004,34(16):2965-2971. doi: 10.1081/SCC-200026650

    31. [31]

      Sandhar R K, Sharma J R, Manrao M R. Reaction of Active Methylene Compounds with 4-Fluorobenzalanilines and Antifungal Potential of the Products[J]. J Indian Chem Soc, 2006,83(3):263-265.  

    32. [32]

      Zabicky J. The Kinetics and Mechanism of Carbonyl-Methylene Condensation Reactions XI.Stereochemistry of the Products[J]. J Chem Soc, 1961:683-687.  

    33. [33]

      Hopkins C Y, Chisholm M, Michael R. α-Cyano-β-Arylacrylic Acids[J]. Can J Res, Sect B:Chem Sci, 1945,23B:84-87.  

    34. [34]

      Kajigaeshi S, Nakagawa T, Fujiaki S. Synthesis of Novel Nickel-Hectorite Inorganic Complexes[J]. Chem Lett, 1988,17(12):2045-2046. doi: 10.1246/cl.1988.2045

  • 加载中
    1. [1]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    2. [2]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    10. [10]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    11. [11]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    12. [12]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    13. [13]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    14. [14]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    15. [15]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    16. [16]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    17. [17]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    18. [18]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(0)
  • Abstract views(682)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return