Citation: MENG Yinxia, LI Zhanguo, FENG Yuxiang, ZHANG Jidong. Variation of the Methylamine Lead Iodine Precursor Thin Films During Aging and Its Influence on the Subsequent Perovskite Thin Films[J]. Chinese Journal of Applied Chemistry, ;2017, 34(7): 818-823. doi: 10.11944/j.issn.1000-0518.2017.07.160417 shu

Variation of the Methylamine Lead Iodine Precursor Thin Films During Aging and Its Influence on the Subsequent Perovskite Thin Films

  • Corresponding author: LI Zhanguo, lzhg000@126.com ZHANG Jidong, jdzhang@ciac.ac.cn
  • Received Date: 17 October 2016
    Revised Date: 21 November 2016
    Accepted Date: 29 December 2016

    Fund Project: the National Natural Science Foundation of China 61430037Project of Science and Technology Department of Jilin Province 20140520139JHthe National Natural Science Foundation of China 11474036Foundation of Education Department of Jilin Province 2015174

Figures(5)

  • Variation of the methylamine lead iodine(MAPbI3) precursor thin films during aging at room temperature in the air was studied. With the aging time increasing, more MAPbI3 perovskite is generated and after about 220 min it reaches a stable value while some precursors are still left. The influence of such variation on the subsequent MAPbI3 perovskite thin films was also studied. The X-ray diffraction intensity and UV-Vis absorption of methylamine lead iodine precursor films after aging were lower than those of the as prepared films. The comparison of atomic force microscopy(AFM) surface morphology after thermal annealing shows that the crystalline grain size of thin film made from aged precursor thin film is much smaller than that made from the as prepared precursor film, the crystalline grain size of aged film is about 0.2 μm, and that of the as prepared one is 1.1 m. These phenomena are due to the more MAPbI3 are generated during aging, which acts as more crystal nuclei that lead to smaller crystal grains and lower degree of crystallinity. This work provides a new idea and direction to explore the formation mechanism of methylamine lead iodide perovskite, which is the basic research of methylamine lead iodide perovskite thin film properties. The work has a certain guiding role in the practical production and industrial application in photovoltaic field.
  • 加载中
    1. [1]

      Kojima A, Teshima K, Shirai Y. Organometal Halide Perovskites as Visible-Light Sensitizer for Photovoltaic Cells[J]. J Am Chem Soc, 2009,131(17):6050-6051. doi: 10.1021/ja809598r

    2. [2]

      Bach U, Lupo D, Comte P. Solid-state Dye-sensitized Mesoporous TiO2 Solar Cells with High Photon-to-electron Conversion Efficiencies[J]. Nature, 1998,395(6702):583-585. doi: 10.1038/26936

    3. [3]

      Kim H S, Lee C R, Im J H. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%[J]. Sci Rep, 2012,2(59):1-7.  

    4. [4]

      Newcomer Juices Up the Race to Harness Sunlight[J]. Science, 2013, 342:1438-1439. 

    5. [5]

      Jeon N J, Noh J H, Yang W S. Compositional Engineering of Perovskite Materials for High-performance Solar Cells[J]. Nature, 2015,517(22):476-480.  

    6. [6]

      Li C, Wang F, Xu J. Efficient Perovskite/Fullerene Planar Heterojunction Solar Cells with Enhanced Charge Extraction and Suppressed Charge Recombination[J]. Nanoscale, 2015,7:9771-9778. doi: 10.1039/C4NR06240J

    7. [7]

      Zuo C, Ding L. Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells[J]. Small, 2015,11(41):5528-5532. doi: 10.1002/smll.v11.41

    8. [8]

      WANG Fuzhi, TAN Zhan'ao, DAI Songyuan. Recent Advances in Planar Heterojunction Organic-Inorganic Hybrid Perovskite Solar Cells[J]. Acta Phys Sin, 2015,64(3):36-53.  

    9. [9]

      Zhou H, Chen Q, Li G. Interface Engineering of Highly Efficient Perovskite Solar Cells[J]. Science, 2014,345(6196):542-546. doi: 10.1126/science.1254050

    10. [10]

      Burschka J, Pellet N, Moon S J. Sequential Deposition as a Route to High-performance Perovskite-sensitized Solar Cells[J]. Nature, 2013,499(7458):316-319. doi: 10.1038/nature12340

    11. [11]

      Guo Q, Li C, Qiao W. The Growth of a CH3NH3PbI3 Thin Film Using Simplified Close Space Sublimation for Efficient and Large Dimensional Perovskite Solar Cells[J]. Energy Environ Sci, 2016,9(4):1486-1494. doi: 10.1039/C5EE03620H

    12. [12]

      Zuo C, Ding L. An 80.11% FF Record Achieved for Perovskite Solar Cells by Using the NH4Cl Additive[J]. Nanoscale, 2014,6:9935-9938. doi: 10.1039/C4NR02425G

    13. [13]

      Liu M, Johnston M B, Snaith H J. Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition[J]. Nature, 2013,501(7467):395-398. doi: 10.1038/nature12509

    14. [14]

      Chen Q, Zhou H, Hong Z. Planar Heterojunction Perovskite Solar Cells via Vapor-assisted Solution Process[J]. J Am Chem Soc, 2014,136(2):622-625. doi: 10.1021/ja411509g

    15. [15]

      Dharani S, Mulmudi H K, Yantara N. High Efficiency Electrospun TiO2 Nanofiber Based Hybrid Organic-Inorganic Perovskite Solar Cell[J]. Nanoscale, 2014,6(3):1675-1679. doi: 10.1039/C3NR04857H

    16. [16]

      Li C, Guo Q, Qiao W. Efficient Lead Acetate Sourced Planar Heterojunction Perovskite Solar Cells with Enhanced Substrate Coverage via One-step Spin-coating[J]. Org Electron, 2016,33:194-200. doi: 10.1016/j.orgel.2016.03.017

    17. [17]

      Baikie T, Fang Y, Kadro J M. Synthesis and Crystal Chemistry of the Hybrid Perovskite(CH3NH3)PbI3 for Solid-state Sensitised Solar Cell Applications[J]. J Mater Chem A, 2013,1(18):5628-5641. doi: 10.1039/c3ta10518k

    18. [18]

      Zuo C, Bolink H J, Han H. Advances in Perovskite Solar Cells[J]. Adv Sci, 2016,3(7)1500324. doi: 10.1002/advs.201500324

    19. [19]

      Foley B J, Marlowe D L, Sun K. Temperature Dependent Energy Levels of Methylammonium Lead Iodide Perovskite[J]. Appl Phys Lett, 2015,106(24):243904-243904. doi: 10.1063/1.4922804

    20. [20]

      Pesika N S, Stebe K J, Searson P C. Relationship Between Absorbance Spectra and Particle Size Distributions for Quantum-sized Nanocrystals[J]. J Phys Chem B, 2003,107(38):10412-10415. doi: 10.1021/jp0303218

    21. [21]

      Tomas L, Giles E E, Nakita K N. Stability of Metal Halide Perovskite Solar Cells[J]. Adv Energy Mater, 2015,5(20)1500963. doi: 10.1002/aenm.201500963

    22. [22]

      Hwang I, Jeong I, Lee J. Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation[J]. ACS Appl Mater Interfaces, 2015,7(31):17330-17336. doi: 10.1021/acsami.5b04490

    23. [23]

      Tiep N H, Ku Z, Fan H J. Recent Advances in Improving the Stability of Perovskite Solar Cells[J]. Adv Energy Mater, 2016,6(3)1501420. doi: 10.1002/aenm.201501420

  • 加载中
    1. [1]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    2. [2]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    3. [3]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

    7. [7]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    10. [10]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    15. [15]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    16. [16]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    17. [17]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

Metrics
  • PDF Downloads(6)
  • Abstract views(1221)
  • HTML views(453)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return