Citation: ZHENG Fei, WANG Wei, YU Shanshan, DAI Yulin, LIU Shang, Wen Liankui, YUE Hao. Hydrolysis Behaviors of Combined Dectotion of Panax ginseng and Ginsenosides with Hawthorn by HPLC-Q-TOF MS/MS[J]. Chinese Journal of Applied Chemistry, ;2017, 34(6): 723-728. doi: 10.11944/j.issn.1000-0518.2017.06.160376 shu

Hydrolysis Behaviors of Combined Dectotion of Panax ginseng and Ginsenosides with Hawthorn by HPLC-Q-TOF MS/MS

  • Corresponding author: Wen Liankui, wenliankui@163.com YUE Hao, yuehao@sohu.com
  • Received Date: 20 September 2016
    Revised Date: 18 November 2016
    Accepted Date: 28 December 2016

    Fund Project: the National Natural Science Foundation of China 3140040275

Figures(3)

  • High performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry(HPLC-Q-TOF MS/MS) were used for the comparative analysis of the content of ginsenosides in the decoction of Panax ginseng with hawthorn and hydrolysis of ginsenosides in compatibility of ginsenosides Re, Rg1, Rb1, Rd with hawthorn, single decoction and simulated pH value decoction. The results show that the contents of ginsenosides Rg1 and Rb1 decrease, while the contents of ginsenosides Re, Rd, Rg2, Rg3, F2, Rh1 increase in ginseng-hawthorn combined decoction. Ginsenosides 20(R)-Rg2, 20(S)-Rg2 are the hydrolysates when ginsenoside Re and hawthorn are boiled together, while others are ginsenosides 20(R)-Rg2, 20(S)-Rg2, Rg4 and Rg6 when ginsenoside Re is boiled in the same pH value without hawthorn. In addition, the hydrolysates are ginsenosides 20(S)-Rh1 and 20(R)-Rh1 in ginsenoside Rg1-hawthorn combined decoction, but ginsenosides 20(S)-Rh1, 20(R)-Rh1, Rh4, Rk3 are determined in the simulated pH value decoction. Ginsenosides Rd, 20(S)-Rg3 are the major hydrolysates in co-decoction of ginsenoside Rb1 and hawthorn, while ginsenosides F2, 20(S)-Rg3 are the major hydrolysates from the simulated pH value decoction. Ginsenosides F2, 20(R)-Rg3, 20(S)-Rg3 are hydrolysates in ginsenoside Rd-hawthorn combined decoction, but ginsenosides 20(R)-Rg3, 20(S)-Rg3 are hydrolysates in the simulated pH value decoction. The hydrolysis of ginsenosides is different in the processes of co-decoction with hawthorn and the simulated pH value decoction, which may be the basis of chemical composition in combination of Panax ginseng and hawthorn. It provides the material bases for combination of Panax ginseng and hawthorn in prescriptions of traditional Chinese medicine.
  • 加载中
    1. [1]

      GUO Chong, GAO Yugang, ZANG Pu. Simultaneous Determination of Sixteen Ginsengosides in Panax ginseng and Its Preparation by HPLC[J]. Chinese Tradit Herb Drugs, 2014,45(14):2009-2013. doi: 10.7501/j.issn.0253-2670.2014.14.009

    2. [2]

      LEI Fengjie, FU Junfan, ZHANG Lianxue. Effect of PDG and PTG on Cercosporella brassicaesnd Sclerotinia sclerotiorum[J]. J Yunnan Agric Univ (Nat Sci), 2016,30(2):226-231.  

    3. [3]

      ZHANG Xiaomei. Part of the Hawthorn Panax quinquefolium Shugan Orally Disintegrating Tablets Pharmacodynamics[D]. Chengdu:Chengdu University of Traditional Chinese Medicine, 2007(in Chinese).

    4. [4]

      LOU Lujun, LUO Jiexia, GAO Yun. Overview of Chemical Compositions and Pharmacological Action of Gratagus pinnatifida Bunge[J]. China Pharm, 2014,23(3):92-94.  

    5. [5]

      LENG Jianchun. The Experimental Study on Effect of Ginseng Hawthorn Decoction on Ischemia-Reperfusion Injury in Rats[J]. J Emerg Tradit Chinese Med, 2007,16(1):68-69.  

    6. [6]

      HAO Ying, YU Shanshan, DAI Yulin. Study on Ginsengosides in White Ginseng and Dail Ginseng by RRLC-Q-TOF MS/MS[J]. J Chinese Mass Spectrom Soc, 2014,35(4):311-316. doi: 10.7538/zpxb.youxian.2014.0037

    7. [7]

      DAI Yulin, YUE Hao, SUN Changjiang. Determination of Ginsengosides in Processed Ginseng by Rapid Resolution Liquid Chromatography Coupled with Quadrupole-Time-of-Flight Tandem Mass Spectrometry[J]. Chinese J Anal Chem, 2015,43(8):1181-1186. doi: 10.11895/j.issn.0253-3820.150204

    8. [8]

      WU Shijie, LI Qiujin, XIAO Xuefeng. Studies on Chemical Constituents and Pharmacological Effects of Hawthorn[J]. Drug Evaluat Res, 2010,33(4):316-319.  

  • 加载中
    1. [1]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    4. [4]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    5. [5]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    6. [6]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    7. [7]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    8. [8]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    9. [9]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    10. [10]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    15. [15]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    18. [18]

      Jingming Li Bowen Ding Nan Li Nurgul . Application of Comparative Teaching Method in Experimental Project Design of Instrumental Analysis Course: A Case Study in Chromatography Experiment Teaching. University Chemistry, 2024, 39(8): 263-269. doi: 10.3866/PKU.DXHX202312078

    19. [19]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    20. [20]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

Metrics
  • PDF Downloads(0)
  • Abstract views(536)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return