Citation: JIAO Liansheng, MENG Lingju, WU Tongshun, LI Fenghua, NIU Li. Synthesis and Properties of Lithium Vanadium Phosphates/Reduced Graphene Oxide Composite as Cathode Materials[J]. Chinese Journal of Applied Chemistry, ;2017, 34(6): 712-722. doi: 10.11944/j.issn.1000-0518.2017.06.160357 shu

Synthesis and Properties of Lithium Vanadium Phosphates/Reduced Graphene Oxide Composite as Cathode Materials

  • Corresponding author: NIU Li, lniu@ciac.ac.cn
  • Received Date: 6 September 2016
    Revised Date: 10 October 2016
    Accepted Date: 2 December 2016

    Fund Project: Fund for Major Research Instruments and Equipment Development NSFC 215278106the Taishan Scholar Project ts201511058the National Science Fund for Distinguished Young Scholars NSFC 21225524

Figures(10)

  • Lithium vanadium phosphate(Li3V2(PO4)3)/reduced graphene oxide(rGO) composite has been successfully synthesized by incorporating melamine resin(MR) functionalized GO precursor into the Li3V2(PO4)3 solution and the subsequent heat treatment. The structural and electrochemical properties of Li3V2(PO4)3/rGO were characterized. The results show that Li3V2(PO4)3/rGO composite has monoclinic system, restacking of graphene layers and agglomeration of Li3V2(PO4)3 particles have been greatly inhibited, electrochemical performance of the composite has been improved. The as-obtained Li3V2(PO4)3/rGO was used as the cathode material in lithium ion batteries. The very low degree of polarization in the curve shows that electron and ion transports are facile, thus good rate and cycle behavior are observed. A considerably high lithiation capacity of 86 mA·h/g can be retained even at 20 C in the range of 3.0~4.3 V. After 100 cycles at 0.1 C, a discharge capacity of 119.7 mA·h/g could be delivered with the capacity retention of 94%. When the cells are operated between the voltage limits of 3.0~4.8 V vs.Li+/Li, a lithiation capacity of 80 mA·h/g at 10 C and 145.6 mA·h/g at 0.1 C after 100 cycles could be retained. Good cycling and rate performances, together with low carbon content, will be satisfactory for use as cathode material in lithium ion batteries.
  • 加载中
    1. [1]

      Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for Rechargeable Lithium Batteries[J]. Angew Chem Int Ed, 2008,47(16):2930-2946. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      Ji L, Lin Z, Alcoutlabi M. Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries[J]. Energy Environ Sci, 2011,4(8):2682-2690. doi: 10.1039/c0ee00699h

    3. [3]

      Tarascon J M, Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001,414(6861):359-367. doi: 10.1038/35104644

    4. [4]

      Martha S K, Grinblat J, Haik O. LiMn0.8Fe0.2PO4:An Advanced Cathode Material for Rechargeable Lithium Batteries[J]. Angew Chem Int Ed, 2009,48(45):8559-8563. doi: 10.1002/anie.v48:45

    5. [5]

      Saıdi M Y, Barker J, Huang H. Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries[J]. Electrochem Solid-State Lett, 2002,5(7):A149-A151. doi: 10.1149/1.1479295

    6. [6]

      Pan A, Liu J, Zhang J G. Nano-structured Li3V2(PO4)3/Carbon Composite for High-rate Lithium-Ion Batteries[J]. Electrochem Commun, 2010,12(12):1674-1677. doi: 10.1016/j.elecom.2010.09.014

    7. [7]

      Yin S C, Grondey H, Strobel P. Charge Ordering in Lithium Vanadium Phosphates:Electrode Materials for Lithium-Ion Batteries[J]. J Am Chem Soc, 2003,125(2):326-327. doi: 10.1021/ja028973h

    8. [8]

      Wu X B, Wu X H, Guo J H, et al. Polyanion Compounds as Cathode Materials for Li-Ion Batteries, in Rechargeable Batteries:Materials, Technologies and New Trends[M]. Springer International Publishing:Cham. 2015:93-134.

    9. [9]

      Huang H, Yin S C, Kerr T. Nanostructured Composites:A High Capacity, Fast Rate Li3V2(PO4)3/Carbon Cathode for Rechargeable Lithium Batteries[J]. Adv Mater, 2002,14(21):1525-1528. doi: 10.1002/1521-4095(20021104)14:21<1525::AID-ADMA1525>3.0.CO;2-3

    10. [10]

      Gaubicher J, Wurm C, Goward G. Rhombohedral Form of Li3V2(PO4)3 as a Cathode in Li-Ion Batteries[J]. Chem Mater, 2000,12(11):3240-3242. doi: 10.1021/cm000345g

    11. [11]

      Li Y, Bai W Q, Zhang Y D. Synthesis and Electrochemical Performance of Lithium Vanadium Phosphate and Lithium Vanadium Oxide Composite Cathode Material for Lithium Ion Batteries[J]. J Power Sources, 2015,282:100-108. doi: 10.1016/j.jpowsour.2015.02.051

    12. [12]

      B ckenfeld N, Balducci A. On the Use of Lithium Vanadium Phosphate in High Power Devices[J]. J Power Sources, 2013,235:265-273. doi: 10.1016/j.jpowsour.2013.02.019

    13. [13]

      Liu C, Massé R, Nan X. A Promising Cathode for Li-ion Batteries:Li3V2(PO4)3[J]. Energy Storage Mater, 2016,4:15-58. doi: 10.1016/j.ensm.2016.02.002

    14. [14]

      Yin S C, Grondey H, Strobel P. Electrochemical Property:Structure Relationships in Monoclinic Li3-yV2(PO4)3[J]. J Am Chem Soc, 2003,125(34):10402-10411. doi: 10.1021/ja034565h

    15. [15]

      Zheng J C, Li X H, Wang Z X. Li3V2(PO4)3/C Composite Material with Porous Structure and Nano-carbon Webs Synthesized Through Liquid Nitrogen Quenching[J]. Chem Lett, 2009,38(8):818-819. doi: 10.1246/cl.2009.818

    16. [16]

      Rui X H, Li C, Chen C H. Synthesis and Characterization of Carbon-coated Li3V2(PO4)3 Cathode Materials with Different Carbon Sources[J]. Electrochim Acta, 2009,54(12):3374-3380. doi: 10.1016/j.electacta.2009.01.011

    17. [17]

      Zhang J F, Wang X W, Zhang B. Multicore-shell Carbon-coated Lithium Manganese Phosphate and Lithium Vanadium Phosphate Composite Material with High Capacity and Cycling Performance for Lithium-Ion Battery[J]. Electrochim Acta, 2015,169:462-469. doi: 10.1016/j.electacta.2015.03.091

    18. [18]

      Liu Y, Wang S, Tao D. Electrochemical Characterization for Lithium Vanadium Phosphate with Different Calcination Temperatures Prepared by the Sol-gel Method[J]. Mater Charact, 2015,107:189-196. doi: 10.1016/j.matchar.2015.07.014

    19. [19]

      Wu Y, Zhao X, Song Z. Effect of Process Medium on the Synthesis of Carbon Coated Lithium Vanadium Phosphate Composite Using Rheological Phase Reaction Method[J]. J Power Sources, 2015,274:782-790. doi: 10.1016/j.jpowsour.2014.10.089

    20. [20]

      Yan H, Chen W, Wu X. Conducting Polyaniline-wrapped Lithium Vanadium Phosphate Nanocomposite as High-rate and Cycling Stability Cathode for Lithium-Ion Batteries[J]. Electrochim Acta, 2014,146:295-300. doi: 10.1016/j.electacta.2014.09.040

    21. [21]

      Pei B, Jiang Z, Zhang W. Nanostructured Li3V2(PO4)3 Cathode Supported on Reduced Graphene Oxide for Lithium-Ion Batteries[J]. J Power Sources, 2013,239:475-482. doi: 10.1016/j.jpowsour.2013.03.171

    22. [22]

      Cheng B, Zhang X D, Ma X H. Nano-Li3V2(PO4)3 Enwrapped into Reduced Graphene Oxide Sheets for Lithium-Ion Batteries[J]. J Power Sources, 2014,265:104-109. doi: 10.1016/j.jpowsour.2014.04.046

    23. [23]

      Mateyshina Y G, Uvarov N F. Electrochemical Behavior of Li3-xM'xV2-yM″y(PO4)3(M'=K, M″=Sc, Mg+Ti)/C Composite Cathode Material for Lithium-Ion Batteries[J]. J Power Sources, 2011,196:1494-1497. doi: 10.1016/j.jpowsour.2010.08.078

    24. [24]

      Sun H B, Zhang L L, Yang X L. Effect of Fe-Doping Followed by C+SiO2 Hybrid Layer Coating on Li3V2(PO4)3 Cathode Material for Lithium-Ion Batteries[J]. Ceram Int,, 2016,42(15):16557-16562. doi: 10.1016/j.ceramint.2016.07.075

    25. [25]

      Luo Y, He L H, Liu X H. Effect of Mg Doping on Electrochemical Performance of Li3V2(PO4)3/C Cathode Material for Lithium Ion Batteries[J]. Trans Nonferrous Met Soc China, 2015,25(7):2266-2271. doi: 10.1016/S1003-6326(15)63840-7

    26. [26]

      Liu L, Qiu Y, Mai Y. Influences of Neodymium Doping on Magnetic and Electrochemical Properties of Li3V2(PO4)3/C Synthesized Via a Sol-Gel Method[J]. J Power Sources, 2015,295:246-253. doi: 10.1016/j.jpowsour.2015.06.121

    27. [27]

      Liu L, Lei X, Tang H. Influences of La Doping on Magnetic and Electrochemical Properties of Li3V2(PO4)3/C Cathode Materials for Lithium-Ion Batteries[J]. Electrochim Acta, 2015,151:378-385. doi: 10.1016/j.electacta.2014.11.052

    28. [28]

      Yang X, Jun L, Jia H. Study on Structure and Electrochemical Performance of Tm3+-doped Monoclinic Li3V2(PO4)3/C Cathode Material for Lithium-Ion Batteries[J]. Electrochim Acta, 2014,150:62-67. doi: 10.1016/j.electacta.2014.10.133

    29. [29]

      Wang Y, Wang L, Hou Z. Effects of Nd-Doping on the Structure and Electrochemical Properties of Li3V2(PO4)3/C Synthesized Using a Microwave Solid-State Route[J]. Solid State Ionics, 2014,261:11-16. doi: 10.1016/j.ssi.2014.03.027

    30. [30]

      Yang Y, Xu W, Guo R. Synthesis and Electrochemical Properties of Zn-doped, Carbon Coated Lithium Vanadium Phosphate Cathode Materials for Lithium-Ion Batteries[J]. J Power Sources, 2014,269:15-23. doi: 10.1016/j.jpowsour.2014.07.005

    31. [31]

      Zhou X, Yin Y X, Wan L J. Facile Synthesis of Silicon Nanoparticles Inserted into Graphene Sheets as Improved Anode Materials for Lithium-Ion Batteries[J]. Chem Commun, 2012,48(16):2198-2200. doi: 10.1039/c2cc17061b

    32. [32]

      Guzman R C, Yang J, Cheng M C. Effects of Graphene and Carbon Coating Modifications on Electrochemical Performance of Silicon Nanoparticle/Graphene Composite Anode[J]. J Power Sources, 2014,246:335-345. doi: 10.1016/j.jpowsour.2013.07.100

    33. [33]

      Zhang L, Wang S, Cai D. Li3V2(PO4)3@C/Graphene Composite with Improved Cycling Performance as Cathode Material for Lithium-Ion Batteries[J]. Electrochim Acta, 2013,91:108-113. doi: 10.1016/j.electacta.2012.12.098

    34. [34]

      Sun D, Li J, Mai J. Application of Monoclinic Graphene-decorated Li3V2(PO4)3/C Nanocrystals as an Ultra-High-Rate Cathode for Lithium-Ion Batteries[J]. Ceram Int, 2016,42(6):7390-7396. doi: 10.1016/j.ceramint.2016.01.142

    35. [35]

      Cui K, Hu S, Li Y. Nitrogen-doped Graphene Nanosheets Decorated Li3V2(PO4)3/C Nanocrystals as High-Rate and Ultralong Cycle-Life Cathode for Lithium-Ion Batteries[J]. Electrochim Acta, 2016,210:45-52. doi: 10.1016/j.electacta.2016.05.099

    36. [36]

      Wang Z, Guo H, Yan P. In-situ Synthesis of Reduced Graphene Oxide Modified Lithium Vanadium Phosphate for High-Rate Lithium-Ion Batteries via Microwave Irradiation[J]. Electrochim Acta, 2015,174:26-32. doi: 10.1016/j.electacta.2015.05.154

    37. [37]

      Rai A K, Thi T V, Gim J. Li3V2(PO4)3/Graphene Nanocomposite as a High Performance Cathode Material for Lithium Ion Battery[J]. Ceram Int, 2015,41(1, Part A):389-396. doi: 10.1016/j.ceramint.2014.08.082

    38. [38]

      Lee J H, Park N, Kim B G. Restacking-Inhibited 3D Reduced Graphene Oxide for High Performance Supercapacitor Electrodes[J]. ACS Nano, 2013,7(10):9366-9374. doi: 10.1021/nn4040734

    39. [39]

      Gan S, Zhong L, Wu T. Spontaneous and Fast Growth of Large-area Graphene Nanofilms Facilitated by Oil/Water Interfaces[J]. Adv Mater, 2012,24(29):3958-3964. doi: 10.1002/adma.v24.29

    40. [40]

      Jung D S, Ryou M H, Sung Y J. Recycling Rice Husks for High-capacity Lithium Battery Anodes[J]. Proc Nat Acad Sci USA, 2013,110(30):12229-12234. doi: 10.1073/pnas.1305025110

    41. [41]

      Evanoff K, Magasinski A, Yang J. Nanosilicon-coated Graphene Granules as Anodes for Li-Ion Batteries[J]. Adv Energy Mater, 2011,1(4):495-498. doi: 10.1002/aenm.201100071

    42. [42]

      Dedryvère R, Maccario M, Croguennec L. X-Ray Photoelectron Spectroscopy Investigations of Carbon-coated LixFePO4 Materials[J]. Chem Mater, 2008,20(22):7164-7170. doi: 10.1021/cm801995p

    43. [43]

      Ren M, Zhou Z, Li Y. Preparation and Electrochemical Studies of Fe-doped Li3V2(PO4)3 Cathode Materials for Lithium-Ion Batteries[J]. J Power Sources, 2006,162:1357-1362. doi: 10.1016/j.jpowsour.2006.08.008

    44. [44]

      Rui X H, Li C, Liu J. The Li3V2(PO4)3/C Composites with High-rate Capability Prepared by a Maltose-based Sol-Gel Route[J]. Electrochim Acta, 2010,55:6761-6767. doi: 10.1016/j.electacta.2010.05.093

    45. [45]

      Hatzikraniotis E, Mitsas C L, Siapkas D I. Differential Capacity Analysis, a Tool to Examine the Performance of Graphites for Li-Ion Cells. In Materials for Lithium-Ion Batteries[M]. Julien, C., Stoynov, Z., Eds. Springer Netherlands:Dordrecht, 2000:529-534.

    46. [46]

      Xi Y, Zhang Y, Su Z. Microwave Synthesis of Li3V2(PO4)3/C as Positive-Electrode Materials for Rechargeable Lithium Batteries[J]. J Alloys Compd, 2015,628(1):396-400.

    47. [47]

      Kee Y, Dimov N, Kobayashi E. Structural and Electrochemical Properties of Fe-and Al-doped Li3V2(PO4)3 for All-Solid-State Symmetric Lithium Ion Batteries Prepared by Spray-Drying-Assisted Carbothermal Method[J]. Solid State Ionics, 2015,272(1):138-143.  

    48. [48]

      ZHAO Mengxi, LU Zhongpei, CHEN Lin. Electrospun Li3V2(PO4)3/Carbon Nanofiber as Cathode Materials for the High-performance Lithium-Ion Batteries[J]. J Changshu Inst Technol (Nat Sci), 2016,30(2):32-36.

    49. [49]

      ZHANG Jiaheng, CHEN Ling, MO Youde. Synthesis and Properties of Li3V(2-x)Alx(PO4)3 Cathode Material for Lithium-Ion Battery[J]. Guangdong Chem, 2016,43(12):23-24. doi: 10.3969/j.issn.1007-1865.2016.12.011

    50. [50]

      Yin W M, Zhang T T, Zhu Q. Synthesis and Electrochemical Performance of Li(3-2x)MgxV2(PO4)3/C Composite Cathode Materials for Lithium-Ion Batteries[J]. Trans Nonferrous Met Soc China, 2015,25(6):1978-1985. doi: 10.1016/S1003-6326(15)63806-7

    51. [51]

      XIA Ao, HUANG Jianfeng, TAN Guoqiang. Preparation and Synthesized Activation Energy of Li3V2(PO4)3/C Composites by Sol-Gel Method[J]. J Shanxi Univ Sci Tech (Nat Sci Ed), 2015,33(5):56-59.

    52. [52]

      Luo Y Z, He L H, Liu X H. Effect of Mg Doping on Electrochemical Performance of Li3V2(PO4)3/C Cathode Material for Lithium Ion Batteries[J]. Trans Nonferrous Met Soc China, 2015,25(7):2266-2271. doi: 10.1016/S1003-6326(15)63840-7

    53. [53]

      LAI Chunyan, WEI Jiaojiao, WANG Baofeng. Research on Lithium-Ion Battery Cathode Material Li3V2(PO4)3/MCNTs Synthesis and Electrochemical Performance[J]. Chinese J Power Sources, 2015,39(1):34-36.

  • 加载中
    1. [1]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    11. [11]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    17. [17]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

Metrics
  • PDF Downloads(2)
  • Abstract views(764)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return