Citation: LI Xiang, JIN Yingying, LIU Yibo, ZHAO Zhen, LI Xiao, CHENG Fang, LIU Zhonghua, HUANG Yongwei. Application and Progress of Perylenediimides Derivatives in Treating Tumor[J]. Chinese Journal of Applied Chemistry, ;2017, 34(6): 611-622. doi: 10.11944/j.issn.1000-0518.2017.06.160356 shu

Application and Progress of Perylenediimides Derivatives in Treating Tumor

  • Corresponding author: LIU Zhonghua, lzh2001hawk@163.com HUANG Yongwei, hywei79@126.com
  • Received Date: 6 September 2016
    Revised Date: 10 November 2017
    Accepted Date: 17 January 2017

    Fund Project: Project of Science and Technology Department of Henan Province 162102310074Program for Science & Technology Innovation Talents in the Universities of Henan Province 16HASTIT008China Postdoctoral Science Foundation 2015T80767Scientific Research Fund project of Henan University xxjc20140019China Postdoctoral Science Foundation 2013M530335the National Natural Science Foundation of China 21572045

Figures(7)

  • At present, malignant tumor has been becoming the main threat to human's death. Chemotherapy is one of the main methods of tumor therapy. However, there are many defects, such as side effects, drug resistance and difficulty of monitoring. Most of research works focus on improving the drugs' therapeutic effect and cutting down it's side effects, drugs' carriers are used to increase its concentration in the local lesions, which promote the efficiency of inhibiting tumor cells and reduce side effects with antitumor drugs. Perylenediimides derivatives(PDI) is a highly stable fluorescing materials, which is easily modified to enhance its biocompatibility and exercise a variety of functions. It can be used as drug carriers, fluorescence imaging, and anticancer drugs for cancers' diagnosis and treatment. This review focuses on the recent progress of PDI's biomedical applications and elaborates from drug carrier, antitumor drugs and fluorescent tracer aspects. This review summarized the basic experimental theory and gave the way for the application of PDI in clinical work.
  • 加载中
    1. [1]

      Torre L A, Bray F, Siegel R L. Global Cancer Statistics, 2012[J]. CA Cancer J Clin, 2015,65(2):87-108. doi: 10.3322/caac.21262

    2. [2]

      Chen W, Zheng R, Baade P D. Cancer Statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115-132. doi: 10.3322/caac.21338

    3. [3]

      LI Shihong, WANG Shaojun. Doxorubicin Cardiotoxicity Pathogenesis Recent Exhibition[J]. J Clin Cardiol, 2005,21(4):249-252.  

    4. [4]

      HAN Linlin, LIU Ying. Evaluation of Cisplatin on Renal Toxicity Using Integrated Backscatter Parameters[J]. J Ultrasound Tradit Chinese Med, 2008,24(7):638-640.  

    5. [5]

      TIAN Jie, YU Pei, SUN Wenxuan. Effects of Cyclophosphamide on Bone Marrow Hematopoietic Cells in Normal Mice and Its Mechanism[J]. Chinese J Exp Hematol, 2012,20(6):1316-1321.  

    6. [6]

      WU Cuifang, LIU Yulan, JIA Sujie. Effect of Vincristine Chemotherapy on Neurotoxicity in 3 Patients[J]. Adver Drug React J, 2009,11(5):362-363.  

    7. [7]

      YIN Yatao, PENG Ying. Advances in the Research of Nanomaterials in the Treatment of Glioma[J]. Int J Neurol Neurosurg, 2014,41(3):242-245.  

    8. [8]

      XU Hongyan, LIU Jianfeng, SONG Naling. Application of Organic Nanomaterials as Drug Carriers in Treatment of Brain Gliomas[J]. Cancer Res Prevent Treat, 2013,40(11):1101-1104.  

    9. [9]

      ZHANG Zhenyu, XU Jian, ZHONG Ping. Progress in the Treatment of Malignant Glioma with Nano-carrier System[J]. Int J Neurol Neurosurg, 2011,38(3):250-253.  

    10. [10]

      CUI Changchang, KE Xue, LYU Huixia. Advances in Targeted Therapy of Cancer Stem Cells[J]. Prog Pharm Sci, 2016(1):20-29.  

    11. [11]

      Hanahan D, Weinberg R A. Hallmarks of Cancer:The Next Generation[J]. Cell, 2011,144(5):646-674. doi: 10.1016/j.cell.2011.02.013

    12. [12]

      DING Yanping, JI Tianjiao, SONG Xiao. Advances in the Application of Nanotechnology to Identify and Regulate Tumor Microenvironment for Tumor Diagnosis and Treatment[J]. Chinese Sci Bull, 2013(24):2436-2448.  

    13. [13]

      Jin S, Li S, Wang C. Biosafe Nanoscale Pharmaceutical Adjuvant Materials[J]. J Biomed Nanotechnol, 2014,10(9):2393-2419. doi: 10.1166/jbn.2014.1898

    14. [14]

      Chen M, Yin M. Design and Development of Fluorescent Nanostructures for Bioimaging[J]. Prog Polym Sci, 2013,39(2):365-395.  

    15. [15]

      Sun M, Mullen K, Yin M. Water-soluble Perylenediimides:Design Concepts and Biological Applications[J]. Chem Soc Rev, 2016,45(6):1513-1528. doi: 10.1039/C5CS00754B

    16. [16]

      Wang K R, An H W, Rong R X. Fluorescence Turn-on Sensing of Protein Based on Mannose Functionalized Perylene Bisimides and Its Fluorescence Imaging[J]. Biosens Bioelectron, 2014,58(1):27-32.  

    17. [17]

      Sharma P, Brown S, Walter G. Nanoparticles for Bioimaging[J]. Adv Colloid Interface Sci, 2006,123/124/125/126:471-485.  

    18. [18]

      Kahveci Z, Vazquez-Guillo R, Martinez-Tome M J. New Red-Emitting Conjugated Polyelectrolyte:Stabilization by Interaction with Biomolecules and Potential Use as Drug Carriers and Bioimaging Probes[J]. ACS Appl Mater Interfaces, 2016,8(3):1958-1969. doi: 10.1021/acsami.5b10167

    19. [19]

      Guo Z, Park S, Yoon J. Recent Progress in the Development of Near-infrared Fluorescent Probes for Bioimaging Applications[J]. Chem Soc Rev, 2014,43(1):16-29. doi: 10.1039/C3CS60271K

    20. [20]

      Peng F, Su Y, Zhong Y. Silicon Nanomaterials Platform for Bioimaging, Biosensing, and Cancer Therapy[J]. Acc Chem Res, 2014,47(2):612-623. doi: 10.1021/ar400221g

    21. [21]

      Liu K, Xu Z, Yin M. Perylenediimide-cored Dendrimers and Their Bioimaging and Gene Delivery Applications[J]. Prog Polym Sci, 2015,2015(46):25-54.  

    22. [22]

      Huang Y, Quan B, Wei Z. Self-Assembled Organic Functional Nanotubes and Nanorods and Their Sensory Properties[J]. J Phys Chem C, 2009,113(10):3929-3933. doi: 10.1021/jp8078452

    23. [23]

      Huang Y, Hu J, Kuang W. Modulating Helicity Through Amphiphilicity-Tuning Supramolecular Interactions for the Controlled Assembly of Perylenes[J]. Chem Commun(Camb), 2011,47(19):5554-5556. doi: 10.1039/c1cc10220f

    24. [24]

      Hu J, Kuang W, Deng K. Self-Assembled Sugar-Substituted Perylene Diimide Nanostructures with Homochirality and High Gas Sensitivity[J]. Adv Funct Mater, 2012,22(19):4149-4158. doi: 10.1002/adfm.v22.19

    25. [25]

      Huang Y, Wang J, Wei Z. Modulating Supramolecular Helicity and Electrical Conductivity of Perylene Dyes Through an Achiral Alkyl Chain[J]. Chem Commun(Camb), 2014,50(61):8343-8345. doi: 10.1039/c4cc03563a

    26. [26]

      Huang Y, Wang J, Zhai H. Helical Supramolecular Aggregates of Sugar-based Perylene Dyes:The Effect of Core-substituted Groups[J]. Soft Matter, 2014,10(40):7920-7924. doi: 10.1039/C4SM01561D

    27. [27]

      Fan Q, Cheng K, Yang Z. Perylene-diimide-based Nanoparticles as Highly Efficient Photoacoustic Agents for Deep Brain Tumor Imaging in Living Mice[J]. Adv Mater, 2015,27(5):843-847. doi: 10.1002/adma.v27.5

    28. [28]

      Le U M, Shaker D S, Sloat B R. A Thermo-sensitive Polymeric Gel Containing a Gadolinium(Gd) Compound Encapsulated into Liposomes Significantly Extended the Retention of the Gd in Tumors[J]. Drug Dev Ind Pharm, 2008,34(4):413-418. doi: 10.1080/03639040701662495

    29. [29]

      Quan C Y, Chen J X, Wang H Y. Core-shell Nanosized Assemblies Mediated by the Alpha-beta Cyclodextrin Dimer with a Tumor-triggered Targeting Property[J]. ACS Nano, 2010,4(7):4211-4219. doi: 10.1021/nn100534q

    30. [30]

      Lee W H, Bebawy M, Loo C Y. Fabrication of Curcumin Micellar Nanoparticles with Enhanced Anti-cancer Activity[J]. J Biomed Nanotechnol, 2015,11(6):1093-1105. doi: 10.1166/jbn.2015.2041

    31. [31]

      Jana A, Nguyen K T, Li X. Perylene-derived Single-component Organic Nanoparticles with Tunable Emission:Efficient Anticancer Drug Carriers with Real-time Monitoring of Drug Release[J]. ACS Nano, 2014,8(6):5939-5952. doi: 10.1021/nn501073x

    32. [32]

      Liu F, Li X, Zhang L. Stimuli-Responsive Nanocarriers for Drug Delivery to the Central Nervous System[J]. Curr Nanosci, 2016,12(1):4-17.  

    33. [33]

      Xu Z, He B, Shen J. Fluorescent Water-soluble Perylenediimide-cored Cationic Dendrimers:Synthesis, Optical Properties, and Cell Uptake[J]. Chem Commun, 2013,49(35):3646-3648. doi: 10.1039/c3cc40330k

    34. [34]

      He B, Chu Y, Yin M. Fluorescent Nanoparticle Delivered dsRNA Toward Genetic Control of Insect Pests[J]. Adv Mater, 2013,25(33):4580-4584. doi: 10.1002/adma.201301201

    35. [35]

      Jana A, Nguyen K T, Li X. Perylene-derived Single-component Organic Nanoparticles with Tunable Emission:Efficient Anticancer Drug Carriers with Real-time Monitoring of Drug Release[J]. ACS Nano, 2014,8(6):5939-5952. doi: 10.1021/nn501073x

    36. [36]

      Jin S, Li S, Wang C. Biosafe Nanoscale Pharmaceutical Adjuvant Materials[J]. J Biomed Nanotechnol, 2014,10(9):2393-2419. doi: 10.1166/jbn.2014.1898

    37. [37]

      Jones C H, Chen C K, Ravikrishnan A. Overcoming Nonviral Gene Delivery Barriers:Perspective and Future[J]. Mol Pharm, 2013,10(11):4082-4098. doi: 10.1021/mp400467x

    38. [38]

      Niven R, Pearlman R, Wedeking T. Biodistribution of Radiolabeled Lipid-DNA Complexes and DNA in Mice[J]. J Pharm Sci, 1998,87(11):1292-1299. doi: 10.1021/js980087a

    39. [39]

      Wong P T, Tang K, Coulter A. Multivalent Dendrimer Vectors with DNA Intercalation Motifs for Gene Delivery[J]. Biomacromolecules, 2014,15(11):4134-4145. doi: 10.1021/bm501169s

    40. [40]

      Watakabe A, Sadakane O, Hata K. Application of Viral Vectors to the Study of Neural Connectivities and Neural Circuits in the Marmoset Brain[J]. Dev Neurobiol, 2016,77(3):354-372.  

    41. [41]

      Chabaud P, Camplo M, Payet D. Cationic Nucleoside Lipids for Gene Delivery[J]. Bioconjug Chem, 2006,17(2):466-472. doi: 10.1021/bc050162q

    42. [42]

      Bell P C, Bergsma M, Dolbnya I P. Transfection Mediated by Gemini Surfactants:Engineered Escape from the Endosomal Compartment[J]. J Am Chem Soc, 2003,125(6):1551-1558. doi: 10.1021/ja020707g

    43. [43]

      Ewert K K, Evans H M, Zidovska A. A Columnar Phase of Dendritic Lipid-based Cationic Liposome-DNA Complexes for Gene Delivery:Hexagonally Ordered Cylindrical Micelles Embedded in a DNA Honeycomb Lattice[J]. J Am Chem Soc, 2006,128(12):3998-4006. doi: 10.1021/ja055907h

    44. [44]

      Ewert K, Ahmad A, Evans H M. Efficient Synthesis and Cell-transfection Properties of a New Multivalent Cationic Lipid for Nonviral Gene Delivery[J]. J Med Chem, 2002,45(23):5023-5029. doi: 10.1021/jm020233w

    45. [45]

      Takahashi T, Hirose J, Kojima C. Synthesis of Poly(amidoamine) Dendron-bearing Lipids with Poly(ethylene glycol) Grafts and Their Use for Stabilization of Nonviral Gene Vectors[J]. Bioconjug Chem, 2007,18(4):1163-1169. doi: 10.1021/bc070014v

    46. [46]

      Choi S H, Jin S E, Lee M K. Novel Cationic Solid Lipid Nanoparticles Enhanced p53 Gene Transfer to Lung Cancer Cells[J]. Eur J Pharm Biopharm, 2008,68(3):545-554. doi: 10.1016/j.ejpb.2007.07.011

    47. [47]

      Kim T I, Baek J U, Zhe B C. Arginine-conjugated Polypropylenimine Dendrimer as a Non-toxic and Efficient Gene Delivery Carrier[J]. Biomaterials, 2007,28(11):2061-2067. doi: 10.1016/j.biomaterials.2006.12.013

    48. [48]

      Liu Z, Winters M, Holodniy M. siRNA Delivery into Human T Cells and Primary Cells with Carbon-Nanotube Transporters[J]. Angew Chem Int Ed Engl, 2007,46(12):2023-2027. doi: 10.1002/(ISSN)1521-3773

    49. [49]

      Jones C H, Chen C K, Ravikrishnan A. Overcoming Nonviral Gene Delivery Barriers:Perspective and Future[J]. Mol Pharm, 2013,10(11):4082-4098. doi: 10.1021/mp400467x

    50. [50]

      You S, Cai Q, Zheng Y. Perylene-cored Star-Shaped Polycations for Fluorescent Gene Vectors and Bioimaging[J]. ACS Appl Mater Interfaces, 2014,6(18):16327-16334. doi: 10.1021/am5045967

    51. [51]

      Xu Z, Guo K, Yu J. A Unique Perylene-based DNA Intercalator:Localization in Cell Nuclei and Inhibition of Cancer Cells and Tumors[J]. Small, 2014,10(20):4087-4092.  

    52. [52]

      Fan Q, Cheng K, Yang Z. Perylene-diimide-based Nanoparticles as Highly Efficient Photoacoustic Agents for Deep Brain Tumor Imaging in Living Mice[J]. Adv Mater, 2015,27(5):843-847. doi: 10.1002/adma.v27.5

    53. [53]

      Wang Q Q, Cheng N, Zheng X W. Synthesis of Organic Nitrates of Luteolin as a Novel Class of Potent Aldose Reductase Inhibitors[J]. Bioorg Med Chem, 2013,21(14):4301-4310. doi: 10.1016/j.bmc.2013.04.066

    54. [54]

      GUO Jia, LI Fengran, LIU Yang. Advances in DNA and RNA G-quadruplexes and Their Small Molecule Ligands[J]. Int J Pharm, 2012,39(5):358-367.  

    55. [55]

      Lyu Y, Fang Y, Miao Q. Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy[J]. ACS Nano, 2016,10(4):4472-4481. doi: 10.1021/acsnano.6b00168

    56. [56]

      Daublain P, Siegmund K, Hariharan M. Photoinduced Charge Separation in Pyrenedicarboxamide-linked DNA Hairpins[J]. Photochem Photobiol Sci, 2008,7(12):1501-1508. doi: 10.1039/b813995d

    57. [57]

      Menacher F, Wagenknecht H A. Ratiometric Molecular Beacons Based on the Perylene Bisimide as a Dimer Internal DNA Base Substitution[J]. Photochem Photobiol Sci, 2011,10(8):1275-1278. doi: 10.1039/c1pp05091e

    58. [58]

      XU Yewei, ZHU Fanghua, ZHANG Lin. Synthesis and Application of Perylene Imide Derivatives[J]. Mater Rev, 2010,24(21):79-85.  

    59. [59]

      Liu H, Xu Y, Li F. Light-driven Conformational Switch of I-motif DNA[J]. Angew Chem Int Ed, 2007,46(14):2515-2517. doi: 10.1002/(ISSN)1521-3773

    60. [60]

      Yin M, Zhang S. A Unique Perylene-based DNA Intercalator:Localization in Cell Nuclei and Inhibition of Cancer Cells and Tumors[J]. Small, 2016,12(2):4087-4092.  

    61. [61]

      Casagrande L, Cordeiro M M, Nor S A. Dental Pulp Stem Cells in Regenerative Dentistry[J]. Odontology, 2011,99(1):1-7. doi: 10.1007/s10266-010-0154-z

    62. [62]

      Aslan A, Gulluce M, Agar G. Mutagenic and Antimutagenic Properties of Some Lichen Species Grown in the Eastern Anatolia Region of Turkey[J]. Tsitol Genet, 2012,46(5):36-42.  

    63. [63]

      Gao F, Chao H, Wang J Q. Targeting Topoisomerase Ⅱ with the Chiral DNA-intercalating Ruthenium(Ⅱ) Polypyridyl Complexes[J]. J Biol Inorg Chem, 2007,12(7):1015-1027. doi: 10.1007/s00775-007-0272-4

    64. [64]

      Xue L, Ranjan N, Arya D P. Synthesis and Spectroscopic Studies of the Aminoglycoside(neomycin)-perylene Conjugate Binding to Human Telomeric DNA[J]. Biochemistry, 2011,50(14):2838-2849. doi: 10.1021/bi1017304

    65. [65]

      Tuntiwechapikul W, Salazar M. Cleavage of Telomeric G-Quadruplex DNA with Perylene-EDTA*Fe(Ⅱ)[J]. Biochemistry, 2001,40(45):13652-13658. doi: 10.1021/bi011363u

    66. [66]

      Tuntiwechapikul W, Lee J T, Salazar M. Design and Synthesis of the G-Quadruplex-specific Cleaving Reagent Perylene-EDTA·Iron(Ⅱ)[J]. J Am Chem Soc, 2001,123(23):5606-5607. doi: 10.1021/ja0156439

    67. [67]

      Fedoroff O Y, Salazar M, Han H. NMR-Based Model of a Telomerase-inhibiting Compound Bound to G-Quadruplex DNA[J]. Biochemistry, 1998,37(36):12367-12374. doi: 10.1021/bi981330n

    68. [68]

      Rossetti L, Franceschin M, Bianco A. Perylene Diimides with Dfferent Side Chains are Selective in Inducing Different G-Quadruplex DNA Structures and in Inhibiting Telomerase[J]. Bioorg Med Chem Lett, 2002,12(18):2527-2533. doi: 10.1016/S0960-894X(02)00504-8

    69. [69]

      Hsiang Y H, Hertzberg R, Hecht S. Camptothecin Induces Protein-linked DNA Breaks via Mammalian DNA Topoisomerase Ⅰ[J]. J Biol Chem, 1985,260(27):14873-14878.  

    70. [70]

      Sun M, Yin W, Dong X. Fluorescent Supramolecular Micelles for Imaging-guided Cancer Therapy[J]. Nanoscale, 2016,8(9):5302-5312. doi: 10.1039/C6NR00450D

    71. [71]

      Reichardt N C, Martin-Lomas M, Penades S. Glyconanotechnology[J]. Chem Soc Rev, 2013,42(10):4358-4376. doi: 10.1039/c2cs35427f

    72. [72]

      Jayaraman N. Multivalent Ligand Presentation as a Central Concept to Study Intricate Carbohydrate-protein Interactions[J]. Chem Soc Rev, 2009,38(12):3463-3483. doi: 10.1039/b815961k

    73. [73]

      Grunstein D, Maglinao M, Kikkeri R. Hexameric Supramolecular Scaffold Orients Carbohydrates to Sense Bacteria[J]. J Am Chem Soc, 2011,133(35):13957-13966. doi: 10.1021/ja2036767

    74. [74]

      Dube D H, Bertozzi C R. Glycans in Cancer and Inflammation-potential for Therapeutics and Diagnostics[J]. Nat Rev Drug Discov, 2005,4(6):477-488. doi: 10.1038/nrd1751

    75. [75]

      Liu F T, Rabinovich G A. Galectins as Modulators of Tumour Progression[J]. Nat Rev Cancer, 2005,5(1):29-41. doi: 10.1038/nrc1527

    76. [76]

      Ohtsubo K, Marth J D. Glycosylation in Cellular Mechanisms of Health and Disease[J]. Cell, 2006,126(5):855-867. doi: 10.1016/j.cell.2006.08.019

    77. [77]

      Ellis G A, Palte M J, Raines R T. Boronate-mediated Biologic Delivery[J]. J Am Chem Soc, 2012,134(8):3631-3634. doi: 10.1021/ja210719s

    78. [78]

      Peri F. Clustered Carbohydrates in Synthetic Vaccines[J]. Chem Soc Rev, 2013,42(11):4543-4556. doi: 10.1039/C2CS35422E

    79. [79]

      Tanaka K, Fukase K. Chemical Approach to a Whole Body Imaging of Sialo-N-Linked Glycans[J]. Top Curr Chem, 2015,367:201-230.  

    80. [80]

      Akagi T, Ichiki T. Cell Electrophoresis on a Chip:What Can We Know from the Changes in Electrophoretic Mobility?[J]. Anal Bioanal Chem, 2008,391(7):2433-2441. doi: 10.1007/s00216-008-2203-9

    81. [81]

      Yin M, Shen J, Gropeanu R. Fluorescent Core/Shell Nanoparticles for Specific Cell-nucleus Staining[J]. Small, 2008,4(7):894-898. doi: 10.1002/smll.v4:7

    82. [82]

      Yin M, Feng C, Shen J. Dual-responsive Interaction to Detect DNA on Template-based Fluorescent Nanotubes[J]. Small, 2011,7(12):1629-1634. doi: 10.1002/smll.v7.12

    83. [83]

      Gorl D, Zhang X, Wurthner F. Molecular Assemblies of Perylene Bisimide Dyes in Water[J]. Angew Chem Int Ed, 2012,51(26):6328-6348. doi: 10.1002/anie.201108690

    84. [84]

      Krieg E, Shirman E, Weissman H. Supramolecular Gel Based on a Perylene Diimide Dye:Multiple Stimuli Responsiveness, Robustness, and Photofunction[J]. J Am Chem Soc, 2009,131(40):14365-14373. doi: 10.1021/ja903938g

    85. [85]

      Kasprzak M M, Laerke H N, Knudsen K E. Changes in Molecular Characteristics of Cereal Carbohydrates after Processing and Digestion[J]. Int J Mol Sci, 2012,13(12):16833-16852. doi: 10.3390/ijms131216833

    86. [86]

      Wang K R, An H W, Rong R X. Synthesis of Biocompatible Glycodendrimer Based on Fluorescent Perylene Bisimides and Its Bioimaging[J]. Macromol Rapid Commun, 2014,35(7):727-734. doi: 10.1002/marc.v35.7

    87. [87]

      Petkau K, Kaeser A, Fischer I. Pre-and Postfunctionalized Self-assembled Pi-conjugated Fluorescent Organic Nanoparticles for Dual Targeting[J]. J Am Chem Soc, 2011,133(42):17063-17071. doi: 10.1021/ja2075345

    88. [88]

      Ruff Y, Buhler E, Candau S J. Glycodynamers:Dynamic Polymers Bearing Oligosaccharides Residues-Generation, Structure, Physicochemical, Component Exchange, and Lectin Binding Properties[J]. J Am Chem Soc, 2010,132(8):2573-2584. doi: 10.1021/ja9082733

    89. [89]

      Yin M, Feng C, Shen J. Dual-Responsive Interaction to Detect DNA on Template-based Fluorescent Nanotubes[J]. Small, 2011,7(12):1629-1634. doi: 10.1002/smll.v7.12

    90. [90]

      Yin M, Shen J, Pflugfelder G O. A Fluorescent Core-Shell Dendritic Macromolecule Specifically Stains the Extracellular Matrix[J]. J Am Chem Soc, 2008,130(25):7806-7807. doi: 10.1021/ja8022362

    91. [91]

      Ozawa T, YoshimuraH , Kim S B. Advances in Fluorescence and Bioluminescence Imaging[J]. Anal Chem, 2013,85(2):590-609. doi: 10.1021/ac3031724

    92. [92]

      You S, Cai Q, Müllen K. pH-Sensitive Unimolecular Fluorescent Polymeric Micelles:From Volume Phase Transition to Optical Response[J]. Chem Commun (Cambridge, U.K.), 2014,50(7):823-825. doi: 10.1039/C3CC48046A

    93. [93]

      Yin M, Feng C, Shen J. Dual-Responsive Interaction to Detect DNA on Template-Based Fluorescent Nanotubes[J]. Small, 2011,7(12):1629-1634. doi: 10.1002/smll.v7.12

    94. [94]

      Wang K R, An H W, Rong R X. Fluorescence Turn-on Sensing of Protein Based on Mannose Functionalized Perylene Bisimides and Its Fluorescence Imaging[J]. Biosens Bioelectron, 2014,58:27-32. doi: 10.1016/j.bios.2014.02.038

    95. [95]

      Fan Q, Cheng K, Yang Z. Perylene-Diimide-Based Nanoparticles as Highly Efficient Photoacoustic Agents for Deep Brain Tumor Imaging in Living Mice[J]. Adv Mater, 2015,27(5):843-847. doi: 10.1002/adma.v27.5

    96. [96]

      Huang Y, Wang J, Zhai H. Helical Supramolecular Aggregates of Sugar-based Perylene Dyes:The Effect of Core-substituted Groups[J]. Soft Matter, 2014,10(40):7920-7924. doi: 10.1039/C4SM01561D

    97. [97]

      Huang Y, Hu J, Kuang W. Modulating Helicity Through Amphiphilicity-Tuning Supramolecular Interactions for the Controlled Assembly of Perylenes[J]. Chem Commun (Camb), 2011,47(19):5554-5556. doi: 10.1039/c1cc10220f

    98. [98]

      Huang Y, Wang J, Wei Z. Modulating Supramolecular Helicity and Electrical Conductivity of Perylene Dyes Through an Achiral Alkyl Chain[J]. Chem Commun (Camb), 2014,50(61):8343-8345. doi: 10.1039/c4cc03563a

    99. [99]

      Huang Y, Zhang W, Wang J. Probing the Sensory Property of Perylenediimide Derivatives in Hydrazine Gas:Core-substituted Aromatic Group Effect[J]. ACS Appl Mater Interfaces, 2014,6(12):9307-9313. doi: 10.1021/am5016765

    100. [100]

      Reeke G J, Becker J W, Cunningham B A. Structure and Function of Concanavalin A[J]. Adv Exp Med Biol, 1975,55:13-33. doi: 10.1007/978-1-4684-0949-9

    101. [101]

      Rusin O, Kral V, Escobedo J O. A Supramolecular Approach to Protein Labeling. A Novel Fluorescent Bioassay for Concanavalin a Activity[J]. Org Lett, 2004,6(9):1373-1376. doi: 10.1021/ol049781p

    102. [102]

      Lundquist J J, Toone E J. The Cluster Glycoside Effect[J]. Chem Rev, 2002,102(2):555-578. doi: 10.1021/cr000418f

    103. [103]

      Sansone F, Casnati A. Multivalent Glycocalixarenes for Recognition of Biological Macromolecules:Glycocalyx Mimics Capable of Multitasking[J]. Chem Soc Rev, 2013,42(11):4623-4639. doi: 10.1039/c2cs35437c

    104. [104]

      Wang K R, An H W, Rong R X. Fluorescence Turn-on Sensing of Protein Based on Mannose Functionalized Perylene Bisimides and Its Fluorescence Imaging[J]. Biosens Bioelectron, 2014,58:27-32. doi: 10.1016/j.bios.2014.02.038

    105. [105]

      Heek T, Nikolaus J, Schwarzer R. An Amphiphilic Perylene Imido Diester for Selective Cellular Imaging[J]. Bioconjug Chem, 2013,24(2):153-158. doi: 10.1021/bc3005655

    106. [106]

      Yang S K, Shi X, Park S. Monovalent, Clickable, Uncharged, Water-soluble Perylenediimide-cored Dendrimers for Target-specific Fluorescent Biolabeling[J]. J Am Chem Soc, 2011,133(26):9964-9967. doi: 10.1021/ja2009136

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    3. [3]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    4. [4]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    9. [9]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    10. [10]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    11. [11]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    12. [12]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    13. [13]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    14. [14]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    15. [15]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    16. [16]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    17. [17]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    20. [20]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

Metrics
  • PDF Downloads(8)
  • Abstract views(1504)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return