Citation: CHEN Ziting, LIANG Ying. Preparation and Application of Pd Nanomaterials Grown in situ on Non-Through-Hole Porous Alumina[J]. Chinese Journal of Applied Chemistry, ;2017, 34(6): 705-711. doi: 10.11944/j.issn.1000-0518.2017.06.160329 shu

Preparation and Application of Pd Nanomaterials Grown in situ on Non-Through-Hole Porous Alumina

  • Corresponding author: LIANG Ying, lyingair@126.com
  • Received Date: 18 August 2016
    Revised Date: 16 November 2016
    Accepted Date: 16 January 2017

    Fund Project: the National Natural Science Foundation of China 21201043

Figures(5)

  • Using non-through-hole anodic aluminum oxide(AAO) as templates, with Al substrate as support body, Pd nanomaterials were prepared in situ in the channels of AAO with Al substrate as reducing agent. The removal of barrier layer and acid corrosion post-treatment of synthesized Pd/AAO were studied. The Pd morphologies under different situations were observed by scanning electronic microscopy. A plausible mechanism of Pd formation was proposed. The catalytic activity for Suzuki reaction of 4-bromobenzene carboxylic acid and phenylboronic acid was investigated with Pd/AAO as heterogeneous catalysts. It is found that Pd/AAO catalysts exhibit excellent catalytic activity, and the yield is up to 99.8% with 0.06% molar fraction of Pd. The catalysts with sheet structure are easily separated for recovery by just taking out of the solution and can be reused in the next time. This research gives a practical method for the design of heterogeneous catalysts in organic reactions.
  • 加载中
    1. [1]

      Masuda H, Fukud K. Ordered Metal Nanohole Arrays Made by a Two-step Replication of Honeycomb Structures of Anodic Alumina[J]. Science, 1995,268(5216):1466-1468. doi: 10.1126/science.268.5216.1466

    2. [2]

      Yang Y, Gao Q M. Influence of Sulfosalicylic Acid in the Electrolyte on the Optical Properties of Porous Anodic Alumina Membranes[J]. Phys Lett, 2004,333(3/4):328-333.  

    3. [3]

      Liu L C, Yoo S H. Electrochemical Growth of Silver Nanobelts in Cylindrical Aluminum Nanochannels[J]. Cryst Growth Des, 2011,11(9):3731-3734. doi: 10.1021/cg2007809

    4. [4]

      Wei W, Miao T, Aziz A. Three-Dimensional Ni/TiO2 Nanowire Network for High Areal Capacity Lithium Ion Microbattery Applications[J]. Nano Lett, 2012,12(2):655-660. doi: 10.1021/nl203434g

    5. [5]

      Wu G S, Zhang L, Cheng B C. Synthesis of Eu2O3 Nanotubes Arrays Through a Facile Sol-Gel Template Approach[J]. J Am Chem Soc, 2004,126(19):5976-5977. doi: 10.1021/ja039012l

    6. [6]

      Laksbmi B B, Dorhout P K, Martin C R. Sol-Gel Template Synthesis of Semiconductor Nanostructures[J]. Chem Mater, 1997,9(3):857-861. doi: 10.1021/cm9605577

    7. [7]

      Ergen O, Ruebusch D J, Fang H. Shape-Controlled Synthesis of Single-Crystalline Nanopillar Arrays by Template-assisted Vapor-Liquid-Solid Process[J]. J Am Chem Soc, 2010,132(132):13972-13974.  

    8. [8]

      Yang F, Li Y F, Liu T. Plasma Synthesis of Pd Nanoparticles Decorated-Carbon Nanotubes and Its Application in Suzuki Reaction[J]. Chem Eng J, 2013,226(24):52-58.

    9. [9]

      Tan L K, Chong M A S, Gao H. Free-Standing Porous Anodic Alumina Templates for Atomic Layer Deposition of Highly Ordered TiO2 Nanotube Arrays on Various Substrates[J]. J Phys Chem C, 2008,112(1):69-73. doi: 10.1021/jp076949q

    10. [10]

      Cheng D F, Yagihashi M, Hozumi A. Lamination of Alumina Membranes to Polymer Surfaces:Thick, Hard, Transparent, Crack-free Alumina Films on Polymers with Excellent Adhesion[J]. Appl Mater Interfaces, 2011,3(7):2224-2227. doi: 10.1021/am200662d

    11. [11]

      Liang Y, Wang X D, Liu N. A Facile Method to Synthesise Unique Si Nanostructure Materials by Non-Through-Hole Anodic Alumina Templating[J]. Surf Interface Anal, 2013,45(6):1067-1070. doi: 10.1002/sia.v45.6

    12. [12]

      Cui J, Zhang M, Zhan Y. Synthesis and Characterization Amino-salicylaldimine Palladium-based Complexes and Their Suzuki Coupling Reaction Study[J]. Inorg Chem Commun, 2009,12(9):839-841. doi: 10.1016/j.inoche.2009.06.031

    13. [13]

      Liu F S, Huang Y T, Lu C. Efficient Salicylaldimine Ligands for a Palladium-catalyzed Suzuki-Miyaura Cross-Coupling Reactions[J]. Appl Organomet Chem, 2012,26(8):425-429. doi: 10.1002/aoc.v26.8

    14. [14]

      Brayton D F, Larkin T M, Vicic D A. Synthesis of a Bi(phenoxyketimine) Palladium(Ⅱ) Complex and Its Activity in the Suzuki-Miyaura Reaction[J]. J Organomet Chem, 2009,694(18):3008-3011. doi: 10.1016/j.jorganchem.2009.04.044

    15. [15]

      Siamaki A R, Lin Y, Woodberry K. Palladium Nanoparticles Supported on Carbon Nanotubes from Solventless Preparations:Versatile Catalysts for Ligand-free Suzuki Cross Coupling Reactions[J]. J Mater Chem A, 2013,1(41):12909-12918. doi: 10.1039/c3ta12512b

    16. [16]

      Navidi M, Rezadi N, Movassagh B. Palladium(Ⅱ) Schiff Base Complex Supported on Multi-walled Carbon Nanotubes:A Heterogeneous and Reusable Catalyst in the Suzukie Miyaura and Copper-free Sonogashira Hagihara Reactions[J]. J Organometal Chem, 2013,743(3):63-69.

    17. [17]

      FENG Cuilan, LIU Jianping, GUI Jianzhou. Application of Magnetic Nanoparticles Supported Pd Catalysts in C-C Bond Formation Reactions[J]. Chinese J Appl Chem, 2015,32(1):19-26. doi: 10.11944/j.issn.1000-0518.2015.01.140078 

    18. [18]

      Karakhanov E, Maximova , Kardasheva Y. Pd Nanoparticles in Dendrimers Immobilized on Silica-Polyamine Composites as Catalysts for Selective Hydrogenation[J]. ACS Appl Mater Interfaces, 2014,6(11):8807-8816. doi: 10.1021/am501528a

    19. [19]

      Li R, Zhang P, Huang Y M. Facile Approach to Prepare Pd Nanoarray Catalysts within Porous Alumina Templates on Macroscopic Scales[J]. ACS Appl Mater Interfaces, 2013,5(23):12695-12700. doi: 10.1021/am4040762

    20. [20]

      Chee C C, Houy Q, Wamg H. Facile Deposition of Pd Nanoparticles on Carbon Nanotube Microparticles and Their Catalytic Activity for Suzuki Coupling Reactions[J]. J Phys Chem C, 2008,112(22):8172-8176. doi: 10.1021/jp800610q

    21. [21]

      XU Guorong, REN Fenglian, SI Shihui. Study on Removal of the Barrier Between Al Substrate and Porous Anodic Alumina by Electrochemical Approach[J]. Acta Phys Chim Sin, 2006,22(3):341-344.  

    22. [22]

      Tang K J, Yu J H, Zhao Y Y. Fabrication of Super-hydrophobic and Super-oleophilic Boehmite Membranes from Anodic Oxide Film via a Two-phase Thermal Approach[J]. J Mater Chem, 2006,16(18):1741-1745. doi: 10.1039/b600733c

    23. [23]

      Naghipour A, Fakhri A. Heterogeneous Fe3O4@chitosan-Schiff Base Pd Nanocatalyst:Fabrication Characterization and Application as Highly Efficient and Magnetically Recoverable Catalyst for Suzuki-Miyaura and Heck-Mizoroki C-C Coupling Reactions[J]. Catal Commun, 2016,73:39-45. doi: 10.1016/j.catcom.2015.10.002

    24. [24]

      Veisi H, Khazaei A, Safaei M. Synthesis of Biguanide-functionalized Single-walled Carbon Nanotubes(SWCNTs) Hybrid Materials to Immobilized Palladium as New Recyclable Heterogeneous Nanocatalyst for Suzuki-Miyaura Coupling Reaction[J]. J Mol Catal A:Chem, 2014,382(4):106-113.  

  • 加载中
    1. [1]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    3. [3]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    4. [4]

      Yanxin JiangKwai Wun ChengZhiping YangJun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231

    5. [5]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    6. [6]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    7. [7]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    8. [8]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    9. [9]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    10. [10]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    16. [16]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    17. [17]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    18. [18]

      Ting PanDinghu ZhangGuomei YouXiaoxia WuChenguang ZhangXinyu MiaoWenzhi RenYiwei HeLulu HeYuanchuan GongJie LinAiguo WuGuoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857

    19. [19]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    20. [20]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

Metrics
  • PDF Downloads(1)
  • Abstract views(420)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return