Citation: LIN Hongyan, SUN Junjun, WANG Qinglin, ZENG Ling, LIU Guocheng, LIN Jiafeng. A Three-Dimensional Zinc Compound Based on One-Dimensional [H2Mo4O14]n2n- Chain and Bis(pyridyl)-Bis(amide) Ligand: Synthesis, Structure and Property[J]. Chinese Journal of Applied Chemistry, ;2017, 34(6): 693-699. doi: 10.11944/j.issn.1000-0518.2017.06.160307 shu

A Three-Dimensional Zinc Compound Based on One-Dimensional [H2Mo4O14]n2n- Chain and Bis(pyridyl)-Bis(amide) Ligand: Synthesis, Structure and Property

  • Corresponding author: LIN Hongyan, linhongyan_2015@126.com
  • Received Date: 8 August 2016
    Revised Date: 28 September 2016
    Accepted Date: 9 October 2016

    Fund Project: the National Natural Science Foundation of China 21501013the National Natural Science Foundation of China 21401010

Figures(5)

  • A three-dimensional(3D)zinc compound [Zn(3-bpye)(H2Mo4O14)(H2O)2](3-bpye=N, N'-bis(3-pyridinecarboxamide)-1, 2-ethane) based on one-dimensional(1D) [H2Mo4O14]n2n- chain was hydrothermally prepared by bis(pyridyl)-bis(amide) ligand, ammonium molybdate and zinc chloride. Structural analysis by element analysis, indrared(IR) spectroscopy, thermogravity(TG) and X-ray single-crystal diffraction(XRD) reveal that the title compound is triclinic system with P-1 space group. Its cell parameters are a=0.61310(3) nm, b=1.04750(6) nm, c=1.06540(6) nm, α=78.5540(10)°, β=77.5350(10)°, γ=89.9050(10)°, V=0.65420(6) nm3, Mr=981.47, Dc=2.491 g/cm3, Z=1, F(000)=468, R1=0.0290, ωR2=0.1068. In the title compound, 1D [H2Mo4O14]n2n- chains are linked by the Zn2+ ions to form 2D inorganic bimetallic layer [Zn(H2Mo4O14)]n. The adjacent 2D layers are further connected by the bridging ligands 3-bpye to construct 3D framework with CdSO4 topology. This zinc compound possesses strong fluorescence emission. Moreover, this compound shows remarkable photocatalytic activities for the degradation of methylene blue and rhodamine B under ultraviolet irradiation. CCDC: 1493115.
  • 加载中
    1. [1]

      Guo Z Y, Song X Z, Lei H P. A Ketone Functionalized Luminescent Terbium Metal-Organic Framework for Sensing of Small Molecules[J]. Chem Commun, 2015,51(2):376-379. doi: 10.1039/C4CC06729K

    2. [2]

      Mondloch J E, Karagiaridi O, Farha O K. Activation of Metal Organic Framework Materials[J]. CrystEngComm, 2013,15(45):9258-9264. doi: 10.1039/c3ce41232f

    3. [3]

      Wu P Y, Jiang M, Hu X F. Amide-containing Luminescent Metal Organic Complexes as Bifunctional Materials for Selective Sensing of Amino Acids and Reaction Prompting[J]. RSC Adv, 2016,6(33):27944-27951. doi: 10.1039/C5RA27806F

    4. [4]

      Sha J Q, Sun J W, Z hu. The First Two-fold Interpenetrating Polyoxometalate-based Coordination Polymer with Helical Channels:Structure and Catalytic Activities[J]. CrystEngComm, 2016,18(2):283-289. doi: 10.1039/C5CE02021B

    5. [5]

      Wang Y, Sun X P, Li S Z. Generation of Large Polynuclear Rare Earth Metal-Containing Organic Inorganic Polytungstoarsenate Aggregates[J]. Cryst Growth Des, 2015,15(5):2057-2063. doi: 10.1021/cg5012499

    6. [6]

      Xu S S, Chen W L, Wang Y H. Co-sensitization Promoted Light Harvesting with a New Mixed-addenda Polyoxometalate[Cu(C12H8N2)2]2[V2W4O19]·4H2O in Dye-sensitized Solar Cells[J]. Dalton Trans, 2015,44(42):18553-18562. doi: 10.1039/C5DT02992A

    7. [7]

      Fu H, Qin C, Lu Y. An Ionothermal Synthetic Approach to Porous Polyoxometalate-Based Metal Organic Frameworks[J]. Angew Chem, 2012,124(32):8109-8113. doi: 10.1002/ange.201202994

    8. [8]

      Lan Y Q, Li S L, Wang X L. Selfassembly of Polyoxometalate-based Metal Organic Frameworks Based on Octamolybdates and Copper-organic Units:From Cu, CuⅠ, Ⅱ to Cu via Changing Organic Amine[J]. Inorg Chem, 2008,47(18):8179-8187. doi: 10.1021/ic800702d

    9. [9]

      Du X D, Li C H, Zhang Y. Coordination Polymers Based on the Octamolybdate and Flexible Bis(triazole) Ligands with Different Spacer Lengths[J]. CrystEngComm, 2011,13(7):2350-2357. doi: 10.1039/c0ce00517g

    10. [10]

      Kan W Q, Yang J, Liu Y Y. Series of Inorganic Organic Hybrid Materials Constructed From Octamolybdates and Metal Organic Frameworks:Syntheses, Structures, and Physical Properties[J]. Inorg Chem, 2012,51(21):11266-11278. doi: 10.1021/ic300134z

    11. [11]

      Zhang C J, Pang H J, Tang Q. Tailoring Microstructures of Isopolymolybdates:Regular Tuning of the Ligand Spacer Length and Metal Coordination Preferences[J]. Dalton Trans, 2010,39(34):7993-7999. doi: 10.1039/c002037k

    12. [12]

      Yang M X, Lin S, Chen L J. Two Novel 3D Bimetallic Oxide Framework with 16-Membered Wheel Clusters Based on {Mo5O16} Ribbon-like Chains[J]. Inorg Chem Commun, 2011,14:1652-1655. doi: 10.1016/j.inoche.2011.06.031

    13. [13]

      Liu H Y, Wu H, Yang J. pH-Dependent Assembly of 1D to 3D Octamolybdate Hybrid Materials Based on a New Flexible Bis-[(pyridyl)-benzimidazole] Ligand[J]. Cryst Growth Des, 2011,11(5):2920-2927.  

    14. [14]

      Chen Y Q, Li G R, Qu Y K. Water-Insoluble Heterometal-Oxide-Based Photocatalysts Effective for the Photo-Decomposition of Methyl Orange[J]. Cryst Growth Des, 2013,13(2):901-907. doi: 10.1021/cg3016244

    15. [15]

      Chen H L, Li M X, He X. Seven Organic Inorganic Hybrid Compounds Constructed from 2, 4, 6-Tris-(pyridyl)-1, 3, 5-triazine and Polyoxometalates[J]. Inorg Chim Acta, 2010,36:3186-3193.

    16. [16]

      Lin H Y, Xu C, Wang X L. Two isostructural 3D Metal-Organic Frameworks Constructed from 1D[H2Mo4O14]n2n- Chains and the Flexible Bis-pyridyl-bis-amide Ligand[J]. Inorg Chem Commun, 2013,36:81-85. doi: 10.1016/j.inoche.2013.08.020

    17. [17]

      Wang X L, Sun J J, Lin H Y. Novel Anderson-type[TeMo6O24]6--based Metal-organic Complexes Tuned by Different Species and Their Coordination Modes:Assembly, Various Architectures and Properties[J]. Dalton Trans, 2016,45(6):2709-2719. doi: 10.1039/C5DT04074D

    18. [18]

      Wang X L, Chang Z H, Lin H Y. Effect of Polyoxoanions and Amide Group Coordination Modes on the Assembly of Polyoxometalate-based Metal-organic Complexes Constructed from a Semi-rigid Bis-pyridyl-bis-amide Ligand[J]. CrystEngComm, 2015,17(4):895-903. doi: 10.1039/C4CE01933D

    19. [19]

      Wang X L, Chang Z H, Lin H Y. Assembly and photocatalysis of Two Novel 3D Anderson-type Polyoxometalate-based Metal-organic Frameworks Constructed from Isomeric Bis(pyridylformyl)piperazine Ligands[J]. Dalton Trans, 2014,43(32):12272-12278. doi: 10.1039/C4DT01211A

    20. [20]

      Wang X L, Sun J J, Lin H Y. A series of Anderson-type Polyoxometalate-based Metal-organic Complexes:Their pH-Dependent Electrochemical Behaviour, and as Electrocatalysts and Photocatalysts[J]. Dalton Trans, 2016,45(31):12465-12478. doi: 10.1039/C6DT02216B

    21. [21]

      LIN Hongyan, ZENG Ling, WANG Qinglin. Synthesis, Structure and Catalytic Properties of the Keggin-type Silicomolybdenate-based Silver Compound Modified by a Bis-pyridyl-bis-amide Ligand[J]. Chinese J Appl Chem, 2016,33(1):76-83. doi: 10.11944/j.issn.1000-0518.2016.01.150199 

    22. [22]

      Muthu S, Yip J H K, Vittal J J. Coordination Networks of Ag(Ⅰ) and N, N'-Bis(3-pyridinecarboxamide)-1, 6-hexane:Structures and Anion Exchange[J]. J Chem Soc, Dalton Trans, 2002(24):4561-4568. doi: 10.1039/B206680G

    23. [23]

      Brown I D, Altermatt D. Bond-valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database[J]. Acta Crystallogr, Sect B, 1985,41(4):244-247. doi: 10.1107/S0108768185002063

    24. [24]

      Dong B X, Xu Q. Investigation of Flexible Organic Ligands in the Molybdate System:Delicate Influence of a Peripheral Cluster Environment on the Isopolymolybdate Frameworks[J]. Inorg Chem, 2009,48(13):5861-5873. doi: 10.1021/ic900128t

    25. [25]

      Adarsh N N, Dastidar P. A New Series of Zn Coordination Polymer Based Metallogels Derived from Bis-pyridyl-bis-amide Ligands:A Crystal Engineering Approach[J]. Cryst Growth Des, 2011,11(1):328-336. doi: 10.1021/cg101342g

    26. [26]

      Dutta D, Jana A D, Debnath M. Robust 1D Open Rack-like Architecture in Coordination Polymers of Anderson POMs[{Na4(H2O)14}{Cu(gly)}2] [TeMo6O24] and[{Cu(en)2}3{TeW6O24}]:Synthesis, Characterization and Heterogeneous Catalytic Epoxidation of Olefines[J]. Dalton Trans, 2010,39(48):11551-11559. doi: 10.1039/c0dt00426j

    27. [27]

      Xu C Y, Li L K, Wang Y P. Three-dimensional Cd(Ⅱ) Coordination Polymers Based on Semirigid Bis(methylbenzimidazole) and Aromatic Polycarboxylates:Syntheses, Topological Structures and Photoluminescent Properties[J]. Cryst Growth Des, 2011,11(10):4667-4675. doi: 10.1021/cg200961a

    28. [28]

      Li S B, Zhang L, O'Halloran K P. An Unprecedented 3D POM-MOF Based on (7, 8)-Connected Twin Wells-Dawson Clusters:Synthesis, Structure, Electrocatalytic and Photocatalytic Properties[J]. Dalton Trans, 2015,44(6):2062-2065.

    29. [29]

      Wang X L, Han N, Lin H Y. pH and Amine-induced Various Octamolybdate-based Metal-organic Complexes:Assembly, Structures and Properties[J]. Dalton Trans, 2014,43(5):2052-2060. doi: 10.1039/C3DT52494A

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    19. [19]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(0)
  • Abstract views(281)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return