Citation: YANG Dalei, LI Zelin, ZHAO Xiaoli, SUN Zhaoyan, YANG Xiaoniu. Synthesis and Characterization of a High Hole Mobility Material for Polymer Solar Cells[J]. Chinese Journal of Applied Chemistry, ;2016, 33(12): 1375-1382. doi: 10.11944/j.issn.1000-0518.2016.12.160343 shu

Synthesis and Characterization of a High Hole Mobility Material for Polymer Solar Cells

  • Corresponding author: ZHAO Xiaoli,  YANG Xiaoniu, 
  • Received Date: 26 August 2016
    Available Online: 26 September 2016

    Fund Project:

  • One of the important prerequisites of large-area production is that the power conversion efficiency of polymer solar cells is insensitive to the active layer thickness. A novel donor-acceptor copolymer, named poly[N-(2-hexyldecyl)-2,2'-bithiophene-3,3'-dicarboximide-alt-5,5-(2,5-bis(3-(decyloxy)thiophene-2-yl)-thiophene)](PBTI3T-O),with a moderate band gap has been designed and synthesized. PBTI3T-O shows a broad absorption range of 400~720 nm and good solubility in chlorobenzene(CB). The hole mobility of PBTI3T-O and[6,6]-phenyl-C71-butyric acid methyl ester(PC71BM) blend is 5.90×10-3 cm2/(V·s), which is higher than those of most other materials. The excellent charge transport property leads to a power conversion efficiency of 5.56% with a thick active layer of 237 nm. Furthermore, PBTI3T-O based device retains 97% of the highest efficiency with a thickness of ca. 300 nm, indicating its potential application in large-area production.
  • 加载中
    1. [1]

      [1] Wu J S,Cheng S W,Cheng Y J,et al. Donor-acceptor Conjugated Polymers Based on Multifused Ladder-type Arenes for Organic Solar Cells[J]. Chem Soc Rev,2015,44(5):1113-1154.

    2. [2]

      [2] Lu L,Zheng T,Wu Q,et al. Recent Advances in Bulk Heterojunction Polymer Solar Cells[J]. Chem Rev,2015,115(23):12666-12731.

    3. [3]

      [3] LI Zidong,ZHAO Xiaoli,YANG Xiaoniu. Advances on Device Thermal Stability of Polymer Solar Cells[J]. Chinese J Appl Chem,2016,33(1):1-17(in Chinese).李自东,赵晓礼,杨小牛. 聚合物太阳能电池器件热稳定性的研究进展[J]. 应用化学,2016,33(1): 1-17.

    4. [4]

      [4] Chochos C L,Choulis S A. How the Structural Deviations on the Backbone of Conjugated Polymers Influence Their Optoelectronic Properties and Photovoltaic Performance[J]. Prog Polym Sci,2011,36(10):1326-1414.

    5. [5]

      [5] Mei J,Bao Z. Side Chain Engineering in Solution-processable Conjugated Polymers[J]. Chem Mater,2013,26(1):604-615.

    6. [6]

      [6] Qin R P,Jiang Y R,Zhang H X,et al. Fine-tuning of Polymer Photovoltaic Properties by the Length of Alkyl Side Chains[J]. Chinese J Polym Sci,2015,33(3):490-498.

    7. [7]

      [7] Zhou H,Zhang Y,Mai C K,et al. Polymer Homo-tandem Solar Cells with Best Efficiency of 11.3%[J]. Adv Mater,2015,27(10):1767-1773.

    8. [8]

      [8] Chen J D,Cui C,Li Y Q,et al. Single-junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency[J]. Adv Mater,2014,27(6):1035-1041.

    9. [9]

      [9] He Z,Zhong C,Su S,et al. Enhanced Power-conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure[J]. Nat Photon,2012,6(9):591-595.

    10. [10]

      [10] Vak D,Hwang K,Faulks A,et al. Solar Cells: 3D Printer Based Slot-die Coater as a Lab-to-Fab Translation Tool for Solution-processed Solar Cells[J]. Adv Energy Mater,2015,5(4):1401539.

    11. [11]

      [11] Kroon R,Diaz de Zerio Mendaza A,Himmelberger S,et al. A New Tetracyclic Lactam Building Block for Thick,Broad-bandgap Photovoltaics[J]. J Am Chem Soc,2014,136(33):11578-11581.

    12. [12]

      [12] Jung J W,Russell T P,Jo W H,et al. Highly Crystalline Low Band Gap Polymer Based on Thieno[3,4-c]pyrrole-4,6-dione for High-performance Polymer Solar Cells with a >400 nm Thick Active Layer[J]. ACS Appl Mater Interfaces,2015,7(24):13666-13674.

    13. [13]

      [13] Guo X,Zhou N,Lou S J,et al. Polymer Solar Cells with Enhanced Fill Factors[J]. Nat Photon,2013,7(10):825-833.

    14. [14]

      [14] He D,Qian L,Ding L,et al. A Pentacyclic Building Block Containing an Azepine-2,7-dione Moiety for Polymer Solar Cells[J]. Polym Chem,2016,7(13):2329-2332.

    15. [15]

      [15] Guo X,Zhang M,Tan J,et al. Influence of D/A Ratio on Photovoltaic Performance of a Highly Efficient Polymer Solar Cell System[J]. Adv Mater,2012,24(48):6536-6541.

    16. [16]

      [16] Peet J,Kim J Y,Coates N E,et al. Efficiency Enhancement in Low-bandgap Polymer Solar Cells by Processing with Alkane Dithiols[J]. Nat Mater,2007,6(7):497-500.

    17. [17]

      [17] Lu G,Li L,Yang X. Creating a Uniform Distribution of Fullerene C60 Nanorods in a Polymer Matrix and Its Photovoltaic Applications[J]. Small,2008,4(5):601-606.

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    6. [6]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    11. [11]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    12. [12]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    13. [13]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    18. [18]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    19. [19]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(0)
  • Abstract views(299)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return