Citation: ZHAO Xuesen, CUI Rongzhen, LI Yunhui, GOA Ying, CUI Chengzhe. Research Progress on Red Iridium Complexes Phosphorescent Materials and Devices[J]. Chinese Journal of Applied Chemistry, ;2016, 33(9): 1002-1008. doi: 10.11944/j.issn.1000-0518.2016.09.150461 shu

Research Progress on Red Iridium Complexes Phosphorescent Materials and Devices

  • Corresponding author: GOA Ying,  CUI Chengzhe, 
  • Received Date: 28 December 2015
    Available Online: 15 April 2016

    Fund Project:

  • Organic light-emitting devices that are widely used in solid-state lighting and flat panel display have attracted the attention of researchers because of their advantages such as low voltage, high brightness and high efficiency. Among three primary colors devices, the performances of green and blue organic light-emitting devices are generally higher than those of red devices and basically satisfy the requirements of practical application. Due to the narrow energy gap, it is difficult to realize the matched energy levels between red light-emitting materials and host materials, thus causing the low efficiency and color purity of red devices. In addition, red light-emitting materials are necessary for the realization of white organic light-emitting devices. Therefore, how to realize high performance red light-emitting materials is very important for the development of organic light-emitting devices. Herein we reviewed the recent progress of red iridium complexes phosphorescent materials and devices, especially the strategies of enhancing efficiency and color purity.
  • 加载中
    1. [1]

      [1] Pope M,Kallmann H P,Magnante P,et al.Electroluminescence in Organic Crystals[J].J Chem Phys,1963,38(8):2042-2044.

    2. [2]

      [2] Vincett P S,Barlow W A,Hann R A,et al.Electrical Conduction and Low Voltage Blue Electroluminescence in Vacuum-Deposited Organic Films[J].Thin Solid Films,1982,94(2):171-183.

    3. [3]

      [3] Tang C W,Vanslyke S A.Organic Electroluminescent Diodes[J].Appl Phys Lett,1987,51(12):913-915.

    4. [4]

      [4] Burroughes J H,Bradeley D D C,Brown A R,et al.Light-Emitting Diodes Based on Conjugated Polymers[J].Nature,1990,347:539-541.

    5. [5]

      [5] Gustafsson G,Cao Y,Heeger A J,et al.Flexible Light-emitting Diodes Made from Soluble Conducting Polymers[J].Nature,1992,357:477-479.

    6. [6]

      [6] Cao Y,Treacy G M,Heeger A J,et al.Solution-cast Films of Polyaniline:Optical-quality Transparent Electrodes[J].Appl Phys Lett,1992,60(22):2711-2713.

    7. [7]

      [7] Ma Y G,Zhang H Y,Che C M,et al.Electroluminescence from Triplet Metal-Ligand Charge-Transfer Excited State of Transition Metal Complexes[J].Synth Met,1998,94(3):245-248.

    8. [8]

      [8] Adachi C,Baldo M A,Forrest S R,et al.Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device[J].J Appl Phys,2001,90(10):5048-5051.

    9. [9]

      [9] Chen D C,Su S J,Cao Y.Nitrogen Heterocycle-Containing Materials for Highly Efficient Phosphorescent OLEDs with Low Operating Voltage[J].J Mater Chem C,2014,2(45):9565-9578.

    10. [10]

      [10] Baldo M A,O'Brien D F,You Y,et al.Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices[J].Nature,1998,395:151-154.

    11. [11]

      [11] Tsuboyama A,Iwawaki H,Furugori M,et al.Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode[J].J Am Chem Soc,2003,125(42):12971-12979.

    12. [12]

      [12] Su Y J,Huang H L,Li C L,et al.Highly Efficient Red Electrophosphorescent Devices Based on Iridium Isoquinoline Complexes:Remarkable External Quantum Efficiency over a Wide Range of Current[J].Adv Mater,2003,15(11):884-888.

    13. [13]

      [13] Liang B,Jiang C Y,Chen Z,et al.New Iridium Complex as High-Efficiency Red Phosphorescent Emitter in Polymer Light-Emitting Devices[J].J Mater Chem,2006,16(13):1281-1286.

    14. [14]

      [14] Lu K Y,Chou H H,Hsieh C H.Wide-Range Color Tuning of Iridium Biscarbene Complexes from Blue to Red by Different N^N Ligands:An Alternative Route for Adjusting the Emission Colors[J].Adv Mater,2011,23(42):4933-4937.

    15. [15]

      [15] REN Jingkun,XU Huixia,QU Litao,et al.Synthesis and Optoelectronic Properties of a Red-Emitting Iridium (Ⅲ) Complex Containing 1-Phenylpyrazole[J].Acta Phys Chim Sin,2013,29(5):1115-1122(in Chinese).任静琨,许慧侠,屈丽桃,等.以1-苯基吡唑为主配体的红光Ir (Ⅲ)配合物的合成及光电特性[J].物理化学学报,2013,29(05):1115-1122.

    16. [16]

      [16] Zhu M R,Li Y H,Jiang B,et al.Efficient Saturated Red Electrophosphorescence by Using Solution-Processed 1-Phenylisoquinoline-Based Iridium Phosphors with Peripheral Functional Encapsulation[J].Org Electron,2015,26:400-407.

    17. [17]

      [17] Zhu M R,Li Y H,Miao J S,et al.Multifunctional Homoleptic Iridium (Ⅲ) Dendrimers Towards Solution-Processed Nondoped Electrophosphorescence with Low Efficiency Roll-Off[J].Org Electron,2014,15(7):1598-1606.

    18. [18]

      [18] Deng L J,Zhang T,Wang R J,et al.Diphenylphosphorylpyridine-Functionalized Iridium Complexes for High-Efficiency Monochromic and White Organic Light-Emitting Diodes[J].J Mater Chem,2012,22(31):15910-15918.

    19. [19]

      [19] Lee S J,Lee J S,Hwang K J,et al.Synthesis and Characterization of Phosphoescent Iridium Complexes of 6-Chloro-3-Phenylpyridazine and 3-Chloro-6-(3'-Methoxy-Phenyl)-4-Methyl-Pyridazine[J].Curr Appl Phys,2005,5(1):43-46.

    20. [20]

      [20] Tong B H,Mei Q B,Wang S J,et al.Nearly 100% Internal Phosphorescence Efficiency in a Polymer Light-Emitting Diode Using a New Iridium Complex Phosphor[J].J Mater Chem,2008,18(14):1636-1639.

    21. [21]

      [21] Guo L Y,Zhang X L,Wang H S,et al.New Homoleptic Iridium Complexes with C^N=N Type Ligand for High Efficiency Orange and Single Emissive-Layer White OLEDs[J].J Mater Chem C,2015,3(21):5412-5418.

    22. [22]

      [22] Li G M,Zhu D X,Liu Y,et al.Very High Efficiency Orange-Red Light-Emitting Devices with Low Roll-Off at High Luminance Based on an Idea Host-Guest System Consisting of Two Novel Phosphorescent Iridium Complexes with Bipolar Transport[J].Adv Funct Mater,2014,24(47):7420-7426.

    23. [23]

      [23] Li G M,Feng Y S,Peng T,et al.Highly Efficient,Little Efficiency Roll-Off Orange-Red Electrophosphorescent Devices Based on a Bipolar Iridium Complex[J].J Mater Chem C,2015,3(7):1452-1456.

    24. [24]

      [24] Zhou L,Kwong C L,Kwok C C,et al.Efficient Red Electroluminescent Devices with Sterically Hindered Phosphorescent Platinum (Ⅱ) Schiff Base Complexes and Iridium Complex Codopant[J].Chem Asian J,2014,9(10):2984-2994.

    25. [25]

      [25] Zhou L,Li L J,Jiang Y L,et al.Rare Earth Complex as Electron Trapper and Energy Transfer Ladder for Efficient Red Iridium Complex Based Electroluminescent Devices[J].Appl Mater Interfaces,2015,7(29):16046-16053.

    26. [26]

      [26] Lamansky S,Djurovich P,Murphy D,et al.Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:Synthesis,Photophysical Characterization,and Use in Organic Light Emitting Diodes[J].J Am Chem Soc,2001,123(18):4304-4312.

    27. [27]

      [27] Xu M L,Wang G Y,Zhou R,et al.Tuning Iridium (Ⅲ) Complexes Containing 2-Benzo[b]thiophen-2-yl-Pyridine Based Ligands in the Red Region[J].Inorg Chim Acta,2007,360(10):3149-3154.

    28. [28]

      [28] Zhou G J,Wong W Y,Yao B,et al.Triphenylamine-Dendronized Pure Red Iridium Phosphors with Superior OLED Efficiency/Color Purity Trade-Offs[J].Angew Chem Int Ed,2007,46(7):1149-1151.

    29. [29]

      [29] Li Y,Zhang W,Zhang L T,et al.Ultra-High General and Special Color Rendering Index White Organic Light-Emitting Device Based on a Deep Red Phosphorescent Dye[J].Org Electron,2013,14(12):3201-3205.

    30. [30]

      [30] Baranoff E,Yum J H,Graetzel M,et al.Cyclometallated Iridium Complexes for Conversion of Light into Electricity and Electricity into Light[J].J Organoment Chem,2009,694(17):2661-2670.

    31. [31]

      [31] Li J Y,Wang R J,Yang R X,et al.Iridium Complexes Containing 2-Aryl-benzothiazole Ligands:Color Tuning and Application in High-Performance Organic Light-Emitting Diodes[J].J Mater Chem C,2013,1(26):4171-4179.

    32. [32]

      [32] Kim H U,Jang J H,Song W,et al.Improved Luminance and External Quantum Efficiency of Red and White Organic Light-Emitting Diodes with Iridium (Ⅲ) Complexes with Phenyl-Substituted 2-Phenylpyridine as a Second Cyclometalated Ligand[J].J Mater Chem C,2015,3(46):12107-12115.

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    5. [5]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    8. [8]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    11. [11]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    14. [14]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    15. [15]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    20. [20]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

Metrics
  • PDF Downloads(1)
  • Abstract views(525)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return