Citation: MENG Shuaiqi, ZHOU Jinsong, WANG Xiaolong, GAO Xiang, LUO Zhongyang. Adsorption and Removal of Hg on Pd Doped CeO2 Surfaces[J]. Chinese Journal of Applied Chemistry, ;2016, 33(8): 960-967. doi: 10.11944/j.issn.1000-0518.2016.08.150359 shu

Adsorption and Removal of Hg on Pd Doped CeO2 Surfaces

  • Corresponding author: ZHOU Jinsong, 
  • Received Date: 10 October 2015
    Available Online: 10 May 2016

    Fund Project:

  • The adsorption mechanism of Hg on pure CeO2 surface was studied by the density functional theory. The adsorption energy of Hg on different surfaces and different sites of CeO2 was calculated by two-dimensional supercell model of p(3×3). The results show that the adsorption capacity of Hg on pure CeO2 is weak, which is a physical adsorption, and the Hg atom and CeO2 do not form effective chemical bonds. In order to further study the adsorption mechanism of Hg on CeO2 related surface, the adsorption mechanism of Hg on Pd doped CeO2(Pd-CeO2) surface was also studied. The results show that the adsorption capacity of Hg on Pd-CeO2 is strong, which is a chemical adsorption, and the Hg atom and Pd-CeO2 form effective chemical bonds. The adsorption capacity of Hg on CeO2 surface is enhanced due to the doping of Pd. In order to further quantify the adsorption efficiency of Hg on the surface of pure CeO2 and Pd-CeO2, the experimental study has been carried on. The experimental results show that the adsorption efficiency of Hg on pure CeO2 is low, and doping of Pd can effectively improve the adsorption efficiency of CeO2, which are consistent with the results of theoretical calculation.
  • 加载中
    1. [1]

      [1] CHEN Ying,SHAO Yufang. A Review of Mercury Pollution and Human Health Burden[J]. Environ Chem,2012,31(12):1934-1941(in Chinese).陈影,邵玉芳. 汞污染及人体负荷研究进展[J]. 环境化学,2012,31(12):1934-1941.

    2. [2]

      [2] Ministry of Environmental Protection of the People's Republic of China,2011. Emission Standard of Air Pollutants for Thermal Power Plants[S](in Chinese).中华人民共和国环境保护部,2011. 火电厂大气污染物排放标准[S].

    3. [3]

      [3] CHEN Bo. Minamata Convention on Mercury[J]. World Environ,2015,(1):7(in Chinese).陈博. 水俣公约[J]. 世界环境,2015,(1):7.

    4. [4]

      [4] HOU Wenhui,ZHOU Jinsong,ZHANG Yi,et al. Effect of H2S on Elemental Mercury Removal in Coal Gas by Fe2O3[J]. Proc CSEE,2013,33(23):92-98(in Chinese).侯文慧,周劲松,张义,等. H2S对氧化铁脱除煤气中单质汞的影响[J]. 中国电机工程学报,2013,33(23):92-98.

    5. [5]

      [5] Dennis Y L,David L G,Donald J R. Study of Mercury Speciation from Simulated Coal Gasification[J]. Ind Eng Chem Res,2004,17(43):5400-5404.

    6. [6]

      [6] WANG Shuxiao,LIU Min,JIANG Jingkun,et al. Estimate the Mercury Emissions from Non-coal Sources in China[J]. Environ Sci,2006,27(12):2401-2406(in Chinese).王书肖,刘敏,蒋靖坤,等. 中国非燃煤大气汞排放量估算[J]. 环境科学,2006,27(12):2401-2406.

    7. [7]

      [7] WANG Yanjie,LIU Rui,LYU Guangming,et al. Ceria Nanostructures and Their Catalytic Applications[J]. J Chinese Soc Rare Earths,2014,32(3):257-269(in Chinese).王艳杰,刘瑞,吕光明,等. 纳米CeO2的催化基础及应用研究进展[J]. 中国稀土学报,2014,32(3):257-269.

    8. [8]

      [8] Zhou J S,Hou W H,Gao X,et al. CeO2-TiO2 Sorbents for Removal of Elemental Mercury from Syngas[J]. Environ Sci Technol,2013,47(17):10056-10062.

    9. [9]

      [9] HOU Wenhui. Mechanism Study on the Removal of Elemental Mercury from Simulate Syngas over Metal Oxide Sorbents[D]. Hangzhou:Zhejiang University,2015(in Chinese).侯文慧. 模拟煤气条件下金属氧化物吸附脱除单质汞的机理研究[D]. 杭州:浙江大学,2015.

    10. [10]

      [10] ZHENG Zhizhan. Mechanism Study of Mercury Adsorption on Mn Doped CeO2 Surfaces[D]. Hangzhou:Zhejiang University,2013(in Chinese).郑智展. 汞在锰铈复合氧化物表面吸附的机理研究[D]. 杭州:浙江大学,2013.

    11. [11]

      [11] TANG Yuanhao,ZHANG Hua,GUAN Chunmei,et al. First Principles Study on the Effect of Mn, Pr, Sn and Zr on the Properties of CeO2 Based Solid Electrolytes[J]. Sci Sin-Phys Mech Astron,2012,42(9):914-925(in Chinese).唐元昊,张华,管春梅,等. 四价离子M(M=Mn,Pr,Sn,Zr,Se,Te)掺杂对CeO2氧化还原性能的影响[J]. 中国科学:物理学、力学、天文学,2012,42(9):914-925.

    12. [12]

      [12] Steckel J A. Density Functional Theory Study of Mercury Adsorption on Metal Surfaces[J]. Phys Rev B,2008,77(11):115412(1)-115412(13).

    13. [13]

      [13] Kresse G,Furthmuller J. Efficient Iterative Schemes for Ab Initio Total Energy Calculations Using a Plane-wave Basis Set[J]. Phys Rev B,1996,54(16):11169-11186.

    14. [14]

      [14] Perdew J P,Chevary J A,Vosko S H,et al. Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation[J]. Phys Rev B,1992,46(11):6671-6687.

    15. [15]

      [15] Perdew J P,WANG Y. Accurate and Simple Analytic Representation of the Electron Gas Correlation Energy[J]. Phys Rev B,1992,45(23):13244-13249.

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    15. [15]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    16. [16]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    17. [17]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    19. [19]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    20. [20]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

Metrics
  • PDF Downloads(0)
  • Abstract views(372)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return