Citation: ZHANG Guangchun, QIU Jian, XING Haiping, TANG Tao. Influence of Polyethylene-g-polystyrene on the Mechanical Properties and Foaming Behavior of Linear Low Density Polyethylene/Polystyrene Blends[J]. Chinese Journal of Applied Chemistry, ;2016, 33(7): 756-765. doi: 10.11944/j.issn.1000-0518.2016.07.160155 shu

Influence of Polyethylene-g-polystyrene on the Mechanical Properties and Foaming Behavior of Linear Low Density Polyethylene/Polystyrene Blends

  • Corresponding author: XING Haiping,  TANG Tao, 
  • Received Date: 12 April 2016
    Available Online: 17 May 2016

    Fund Project:

  • Polyethylene-g-polystyrene(PE-g-PS) copolymers, which were synthesized by the combination of ring-opening metathesis polymerization(ROMP), hydrogenation and atom transfer radical polymerization(ATRP) method, were utilized to compatibilize linear low density polyethylene/polystyrene(LLDPE/PS) blends. Using the LLDPE/PS blend in mass ratio of 70:30 as example, the effect of introduction of PE-g-PS on the mechanical properties was investigated. Compared to binary blends, elongation at break, tensile strength and yield strength are improved when the PE-g-PS is introduced. Utilizing PE-g-PS0.34k(the subscript 0.34k represents a relative molecular mass of PS is 340) and PE-g-PS1.59k as compatibilizers, the influence of PS branch length on foaming behavior of LLDPE/PS blends was investigated in a batch foaming process with supercritical carbon dioxide as physical foaming agent. Compared to the case containing PE-g-PS0.34k, the cellular structure of the foamed blends becomes much more uniform and no large gap appeares with the addition of PE-g-PS1.59k. When the foaming temperature is lowered to 80 ℃, confined effect of LLDPE solid around exists, much more uniform cellular structure also appears as PE-g-PS1.59k is introduced.
  • 加载中
    1. [1]

      [1] JIAO Lei,CHEN Cong,CHEN Cheng,et al. Preparation and Characterization of Cross-Linked PVC/TPU Lightweight Materials[J]. Acta Polym Sin,2012,(5):513-520(in Chinese).焦雷,陈聪,陈程,等. 交联型PVC/TPU轻质材料的制备和表征[J]. 高分子学报,2012,(5):513-520.

    2. [2]

      [2] ZHONG Yalin,HUANG Hanxiong. Cellular Structure Manipulation of Microcellular PP/POE Blends Based on Phase Morphology[J]. Acta Polym Sin,2015,(6):720-726(in Chinese).钟亚林,黄汉雄. 基于相形态的微孔发泡PP/POE共混物泡孔结构调控[J]. 高分子学报,2015,(6):720-726.

    3. [3]

      [3] Gersappe D,Irvine D,Balazs A C,et al. The Use of Graft Copolymers to Bind Immiscible Blends[J]. Science,1994,265(5175):1072-1074.

    4. [4]

      [4] MA Jingjing,HUANG Baotong. Study on the Use of Graft Copolymer EPR-g-PS as a Compatibilizer for PS/EPDM Blends[J]. Chinese J Appl Chem,1984,1(4):34-39(in Chinese).马京晶,黄葆同. 接枝共聚物EPR-g-PS作PS/EPDM共混体系增容剂的探讨[J]. 应用化学,1984,1(4):34-39.

    5. [5]

      [5] LIU Yanlong,KE Zhuo,YIN Ligang,et al. Combined Lewis Acids Catalysed in-Situ Compatibilization of Poly(octene-ethylene) and Polystyrene Blends[J]. Chinese J Appl Chem,2009,26(10):1129-1133(in Chinese).刘焱龙,柯卓,尹立刚,等. 双路易斯酸催化原位增容乙烯辛烯共聚物/聚苯乙烯的共混物[J]. 应用化学,2009,26(10):1129-1133.

    6. [6]

      [6] Machi S,Kamel I,Silverman J. Effect of Swelling on Radiation-induced Grafting of Styrene to Polyethylene[J]. J Polym Sci,Part A-1: Polym Chem,1970,8(11):3329-3337.

    7. [7]

      [7] Rabie A,Odian G. Kinetics of Diffusion-Free Radiation Graft Polymerization of Styrene onto Polyethylene[J]. J Polym Sci:Polym Chem Ed,1977,15(2):469-488.

    8. [8]

      [8] Kim S,Kim J K,Park C E. Effect of Molecular Architecture of in situ Reactive Compatibilizer on the Morphology and Interfacial Activity of an Immiscible Polyolefin/Polystyrene Blend[J]. Polymer,1997,38(8):1809-1815.

    9. [9]

      [9] Sun Y J,Baker W E. Polyolefin/Polystyrene in situ Compatibilization Using Friedel-Crafts Alkylation[J]. J Appl Polym Sci,1997,65(7):1385-1393.

    10. [10]

      [10] Díaz M F,Barbosa S E,Capiati N J. Reactive Compatibilization of PE/PS Blends. Effect of Copolymer Chain Length on Interfacial Adhesion and Mechanical Behavior[J]. Polymer,2007,48(4):1058-1065.

    11. [11]

      [11] Shahbazi K,Razavi Aghjeh M K,Abbasi F,et al. Rheology, Morphology and Tensile Properties of Reactive Compatibilized Polyethylene/Polystyrene Blends via Friedel-Crafts Alkylation Reaction[J]. Polym Bull,2012,69(2):241-259.

    12. [12]

      [12] Carrick W L. Reactions of Polyolefins with Strong Lewis Acids[J]. J Polym Sci,Part A-1:Polym Chem,1970,8(1):215-223.

    13. [13]

      [13] Sun Y J,Willemse R J G,Liu T M,et al. In situ Compatibilization of Polyolefin and Polystyrene Using Friedel-Crafts Alkylation through Reactive Extrusion[J]. Polymer,1998,39(11):2201-2208.

    14. [14]

      [14] Chung T C,Lu H L,Ding R D. Synthesis of Polyethylene-g-polystyrene and Polyethylene-g-poly(p-Methylstyrene) Graft Copolymers[J]. Macromolecules,1997,30(5):1272-1278.

    15. [15]

      [15] Zhang G,Wang Y,Xing H,et al. Interplay Between the Composition of LLDPE/PS Blends and Their Compatibilization with Polyethylene-graft-polystyrene in the Foaming Behaviour[J]. RSC Adv,2015,5(34):27181-27189.

    16. [16]

      [16] Wunderlich B,Macromolecular Physics[M]. 3rd Ed,Vol. 3. New York:Academic Press,1980:40.

    17. [17]

      [17] Zhai W,Wang H,Yu J,et al. Foaming Behavior of Isotactic Polypropylene in Supercritical CO2 Influenced by Phase Morphology via Chain Grafting[J]. Polymer,2008,49(13/14):3146-3156.

  • 加载中
    1. [1]

      Chengyi Xiao Xiaoli Sun Chen Zhang Weiwei Li . An In-Depth Analysis of the Scientific Connotations, Testing Methods, and Applications of Free Volume in Polymer Physics. University Chemistry, 2025, 40(4): 33-45. doi: 10.12461/PKU.DXHX202403069

    2. [2]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    3. [3]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    4. [4]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    5. [5]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    6. [6]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    12. [12]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    13. [13]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(476)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return