Citation:
YANG Tingting, GUO Zhiqian, SHAO Andong, ZHAO Ping, ZHU Weihong. A Turn-On Fluorescent Probe for Cysteine Based on Benzopyran[J]. Chinese Journal of Applied Chemistry,
;2016, 33(4): 397-405.
doi:
10.11944/j.issn.1000-0518.2016.04.160053
-
A benzopyran-based turn-on near-infrared probe (E)-2-(benzopyran)ethenyl-5-(diethylamino)phenyl acrylate(DCM-AC) has been successfully synthesized. Acrylate bond is specifically designed for the response units of amino acid. The results show that the spectral response of DCM-AC towards cysteine is highly sensitivity and selectivity. With increasing the concentration(1.0~8.0 μmol/L) of cysteine, a significant color change can be observed and the fluorescent intensity of DCM-AC at 710 nm increases gradually, showing a good linear relationship with concentration. The limit of detection of DCM-AC for cysteine is determined as 2.8×10-7 mol/L. DCM-AC exhibits a highly selective probe for cysteine over homocysteine and glutathione, with no interference of other substances. The recognition mechanism of the DCM-AC to cysteine is verified by mass spectrum,1H NMR titration and absorption spectra, indicating that cysteine thiol groups attack at acrylate double bond of DCM-AC by addition reaction, and finally removed as the cyclic lactam compound.
-
Keywords:
- cysteine,
- fluorescent probe,
- benzopyran,
- selectivity
-
-
-
[1]
[1] Wood Z A,Schröder E,Harris J R,et al. Structure, Mechanism and Regulation of Peroxiredoxins[J]. Trends Biochem Sci,2003,28(1):32-40.
-
[2]
[2] Refsum H,Smith A D,Ueland P M,et al. Facts and Recommendations about Total Homocysteine Determinations:An Expert Opinion[J]. Clin Chem,2004,50(1):3-32.
-
[3]
[3] Gazit V,Ben-Abraham R,Vofsi O,et al. L-Cysteine Increases Glucose Uptake in Mouse Soleus Muscle and SH-SY5Y Cells[J]. Metab Brain Dis,2003,18(3):221-231.
-
[4]
[4] Wang W,Rusin O,Xu X,et al. Detection of Homocysteine and Cysteine[J]. J Am Chem Soc,2005,127(45):15949-15958.
-
[5]
[5] Weerapana E,Wang C,Simon G M,et al. Quantitative Reactivity Profiling Predicts Functional Cysteines in Proteomes[J]. Nature,2010,468(7325):790-795.
-
[6]
[6] Seshadri S,Beiser A,Selhub J. Plasma Homocysteine as a Risk Factor for Dementia and Alzheimer's Disease[J]. New Engl J Med,2002,346(7):476-483.
-
[7]
[7] Tapiero H,Townsend D,Tew K. The Antioxidant Role of Selenium and Seleno-Compounds[J]. Biomed Pharmacother,2003,57(3):134-144.
-
[8]
[8] LI Yan,LIU Xiaoyan,ZHANG Shun,et al. Synthesis and Application of a Coumarin Fluorescence Labeled Peptide[J]. Chinese J Appl Chem,2014,31(12):1413-1418(in Chinese).李燕,刘晓艳,张顺,等. 一种香豆素荧光标记多肽的合成及应用[J]. 应用化学,2014,31(12):1413-1418.
-
[9]
[9] Zhao N,Wu Y H,Shi L X,et al. A Sensitive Phosphorescent Thiol Chemosensor Based on an Iridium(Ⅲ) Complex with α,β-Unsaturated Ketone Functionalized 2,2'-Bipyridyl Ligand[J]. Dalton Trans,2010,39(35):8288-8295.
-
[10]
[10] Kand D,Kalle A M,Varma S J,et al. A Chromenoquinoline-Based Fluorescent Off-On Thiol Probe for Bioimaging[J]. Chem Commun,2012,48(21):2722-2724.
-
[11]
[11] McMahon B K,Gunnlaugsson T. Selective Detection of the Reduced Form of Glutathione(GSH) over the Oxidized(GSSG) Form Using a Combination of Glutathione Reductase and a Tb(Ⅲ)-Cyclen Maleimide Based Lanthanide Luminescent Switch on' Assay[J]. J Am Chem Soc,2012,134(26):10725-10728.
-
[12]
[12] Liu X M,Xi N,Liu S J,et al. Highly Selective Phosphorescent Nanoprobes for Sensing and Bioimaging of Homocysteine and Cysteine[J]. J Mater Chem,2012,22(16):7894-7901.
-
[13]
[13] Wang P,Liu J,Lv X,et al. A Naphthalimide-Based Glyoxal Hydrazone for Selective Fluorescence Turn-On Sensing of Cys and Hcy[J]. Org Lett,2012,14(2):520-523.
-
[14]
[14] Jiang W,Fu Q Q,Fan H H,et al. A Highly Selective Fluorescent Probe for Thiophenols[J]. Angew Chem,2007,119(44):8597-8600.
-
[15]
[15] Zhao C C,Zhou Y,Lin Q N,et al. Development of an Indole-Based Boron-Dipyrromethene Fluorescent Probe for Benzenethiols[J]. J Phys Chem B,2010,115(4):642-647.
-
[16]
[16] Jung H S,Chen X,Kim J S,et al. Recent Progress in Luminescent and Colorimetric Chemosensors for Detection of Thiols[J]. Chem Soc Rev,2013,42(14):6019-6031.
-
[17]
[17] Chen X Q,Zhou Y,Peng X J,et al. Fluorescent and Colorimetric Probes for Detection of Thiols[J]. Chem Soc Rev,2010,39(6):2120-2135.
-
[18]
[18] Tang B,Xing Y L,Li P,et al. A Rhodamine-Based Fluorescent Probe Containing a Se-N Bond for Detecting Thiols and Its Application in Living Cells[J]. J Am Chem Soc,2007,129(38):11666-11667.
-
[19]
[19] Yang X F,Guo Y X,Strongin R M. Conjugate Addition/Cyclization Sequence Enables Selective and Simultaneous Fluorescence Detection of Cysteine and Homocysteine[J]. Angew Chem Int Ed,2011,50(45):10690-10693.
-
[20]
[20] Guo Z Q,Nam S W,Park S,et al. A highly Selective Ratiometric Near-Infrared Fluorescent Cyanine Sensor for Cysteine with Remarkable Shift and Its Application in Bioimaging[J]. Chem Sci,2012,3(9):2760-2765.
-
[21]
[21] Escobedo J O,Rusin O,Lim S,et al. NIR Dyes for Bioimaging Applications[J]. Curr Opin Chem Biol,2010,14(1):64-70.
-
[22]
[22] TANG Kun,QIU Na,WU Pin,et al. Novel Water-soluble Asymmetric Pentamethine Cyanine Dyes:Synthesis, Fluorescent Properties and Fluorescent Labeling[J]. Chinese J Appl Chem,2014,31(11):1255-1260(in Chinese).汤昆,邱娜,吴品,等. 新型水溶性不对称五甲川吲哚菁染料的合成,荧光性能及荧光标记[J]. 应用化学,2014,31(11):1255-1260.
-
[23]
[23] Li X,Qian S J,He Q J,et al. Design and Synthesis of a Highly Selective Fluorescent Turn-On Probe for Thiol Bioimaging in Living Cells[J]. Org Biomol Chem,2010,8(16): 3627-3630.
-
[24]
[24] Niu L Y,Guan Y S,Chen Y Z,et al. BODIPY-Based Ratiometric Fluorescent Sensor for Highly Selective Detection of Glutathione over Cysteine and Homocysteine[J]. J Am Chem Soc,2012,134(46):18928-18931.
-
[25]
[25] Kim G J,Lee K,Kwon H,et al. Ratiometric Fluorescence Imaging of Cellular Glutathione[J]. Org Lett,2011,13(11):2799-2801.
-
[26]
[26] Lin W Y,Yuan L,Cao Z M,et al. A Sensitive and Selective Fluorescent Thiol Probe in Water Based on the Conjugate 1,4-Addition of Thiols to α,β-Unsaturated Ketones[J]. Chem-Eur J,2009,15(20):5096-5103.
-
[27]
[27] Shiu H Y,Chong H C,Leung Y C,et al. A Highly Selective FRET-Based Fluorescent Probe for Detection of Cysteine and Homocysteine[J]. Chem-Eur J,2010,16(11):3308-3313.
-
[28]
[28] Chen X Q,Ko S K,Kim M J,et al. A Thiol-Specific Fluorescent Probe and Its Application for Bioimaging[J]. Chem Commun,2010,46(16):2751-2753.
-
[29]
[29] Lin W Y,Long L L,Tan W. A Highly Sensitive Fluorescent Probe for Detection of Benzenethiols in Environmental Samples and Living Cells[J]. Chem Commun,2010,46(9):1503-1505.
-
[30]
[30] Li H H,Fan J L,Wang J Y,et al. A Fluorescent Chemodosimeter Specific for Cysteine:Effective Discrimination of Cysteine from Homocysteine[J]. Chem Commun,2009,45(39):5904-5906.
-
[31]
[31] Guo Z Q,Zhu W H,Zhu M M,et al. Near-Infrared Cell-Permeable Hg2+-Selective Ratiometric Fluorescent Chemodosimeters and Fast Indicator Paper for MeHg+ Based on Tricarbocyanines[J]. Chem-Eur J,2010,16(48):14424-14432.
-
[32]
[32] Yin J,Kwon Y,Kim D,et al. Cyanine-Based Fluorescent Probe for Highly Selective Detection of Glutathione in Cell Cultures and Live Mouse Tissues[J]. J Am Chem Soc,2014,136(14):5351-5358.
-
[33]
[33] Cao J,Zhao C C,Zhu W H. A Near-Infrared Fluorescence Chemodosimeter for Fluoride via Specific Si-O Cleavage[J]. Tetrahedron Lett,2012,53(16):2107-2110.
-
[34]
[34] Kwak G,Kim H,Kang I K,et al. Charge Transfer Dye in Various Polymers with Different Polarity:Synthesis, Photophysical Properties, and Unusual Aggregation-Induced Fluorescence Changes[J]. Macromolecules,2009,42(5):1733-1738.
-
[35]
[35] Li M,Wu X M,Wang Y,et al. A Near-Infrared Colorimetric Fluorescent Chemodosimeter for the Detection of Glutathione in Living Cells[J]. Chem Commun,2014,50(14):1751-1753.
-
[36]
[36] Zhu W H,Huang X M,Guo Z Q,et al. A Novel NIR Fluorescent Turn-On Sensor for the Detection of Pyrophosphate Anion in Complete Water System[J]. Chem Commun,2012,48(12):1784-1786.
-
[37]
[37] Li Y M,Zhang X L,Zhu B C,et al. A Highly Selective Colorimetric and “Off-On-Off” Fluorescent Probe for Fluoride Ions[J]. Anal Sci,2010,26(10):1077-1080.
-
[38]
[38] XU Zhaohui. SnO Catalyzed Solvent-Free Synthesis of Dimethyl 2-[(Indol-3-yl)-methyl] malonate Derivatives[J]. Chinese J Appl Chem,2015,32(7):759-764(in Chinese).许招会. 无溶剂氧化亚锡催化合成2-[(3-吲哚基)-甲基]丙二酸二甲酯衍生物[J]. 应用化学,2015,32(7):759-764.
-
[1]
-
-
-
[1]
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
-
[2]
Jinlong YAN , Weina WU , Yuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154
-
[3]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[4]
Yu SU , Xinlian FAN , Yao YIN , Lin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126
-
[5]
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
-
[6]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[7]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[8]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[9]
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
-
[10]
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
-
[11]
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
-
[12]
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
-
[13]
Zhifeng CAI , Ying WU , Yanan LI , Guiyu MENG , Tianyu MIAO , Yihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394
-
[14]
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -. -
[15]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[16]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[17]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[18]
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
-
[19]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[20]
Yang Wang , Yunpeng Fu , Xiaoji Liu , Guotao Zhang , Guobin Li , Wanqiang Liu , Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(680)
- HTML views(117)