Citation: HAN Yitong, LIU Min, LI Keyan, ZUO Yi, ZHANG Guoliang, ZHANG Zongchao, GUO Xinwen. Preparation and Application of High Stability Metal-Organic Framework UiO-66[J]. Chinese Journal of Applied Chemistry, ;2016, 33(4): 367-378. doi: 10.11944/j.issn.1000-0518.2016.04.150439 shu

Preparation and Application of High Stability Metal-Organic Framework UiO-66

  • Corresponding author: GUO Xinwen, 
  • Received Date: 9 December 2015
    Available Online: 4 February 2016

    Fund Project:

  • Metal-organic frameworks(MOFs) are a new class of hybrid porous crystalline materials constructed from metal-oxygen clusters with organic linkers, creating three dimensional ordered frameworks. As porous materials, MOFs usually possess very high surface area. The framework topologies and pore size of MOFs can be designed via choosing various metal centers and organic linkers, their chemical properties can be modified by chemical functionalization of linkers and post modification. These unique characteristics make MOFs one of the research hot spots in the fields of chemistry and materials, and they have shown potential applications in various research areas. But there is a crucial weakness which hinders the development of MOFs, namely, the low stability. However, zirconium-terephthalate-based MOF UiO-66 has remarkable hydrothermal stability, the framework is claimed to be stable up to 500 ℃, and it is also highly resistant to many solvents. UiO-66 has gained great attention since the outstanding qualities. In this review, details of the synthesis modulation and functionalization of UiO-66 are presented. In addition, the research actuality and prospective of UiO-66 in the fields of adsorption, catalysis, etc. are also discussed.
  • 加载中
    1. [1]

      [1] Rowsell J L C,YaghiO M. Metal-Organic Frameworks:A New Class of Porous Materials[J]. Micropor Mesopor Mater,2004,73(1/2):3-14.

    2. [2]

      [2] OckwigN W,O'Keeffe M,YaghiO M,et al. Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res,2005,38(3):176-182.

    3. [3]

      [3] Furukawa H,Cordova K E,O'Keeffe M,et al. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science,2013,341(1230444):974-986.

    4. [4]

      [4] Eddaoudi M,Kim J,Rosi N,et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science,2002,295(5554):469-472.

    5. [5]

      [5] Rowsel J L C,Yaghi O M. Strategies for Hydrogen Store in Metal-Organic Frame Works[J]. Angew Chem Int Ed,2005,44(30):4670-4679.

    6. [6]

      [6] Jia J H,Lin X,Wilson C,et al. Twelve-connected Porous Metal-Organic Frameworks with High H2 Adsorption[J]. Chem Commun,2007,(8):840-842.

    7. [7]

      [7] Barin G,Krungleviciute V,Gutov O,et al. Defect Creation by Linker Fragmentation in Metal-Organic Frameworks and Its Effects on Gas Uptake Properties[J]. Inorg Chem,2014,53(13):6914-6919.

    8. [8]

      [8] Löpez-Maya E,Montoro C,Colombo V,et al. Improved CO2 Capture from Flue Gas by Basic Sites, Charge Gradients, and Missing Linker Defects on Nickel Face Cubic Centered MOFs[J]. Adv Funct Mater,2014,24(39):6130-6135.

    9. [9]

      [9] Trens P,Belarbi H,Shepherd C,et al. Adsorption and Separation of Xylene Isomers Vapors onto the Chromium Terephthalate-based Porous Material MIL-101(Cr):An Experimental and Computational Study[J]. Micropor Mesopor Mater,2014,183(1):17-22.

    10. [10]

      [10] Cirujano F G,Llabr si Xamena F X,Corma A. MOFs as Multifunctional Catalysts:One-pot Synthesis of Menthol From Citronellal over a Bifunctional MIL-101 Catalyst[J]. Dalton Trans,2012,41(14):4249-4254.

    11. [11]

      [11] Opelt S,Turk S,Dietzsch E,et al. Preparation of Palladium Supported on MOF-5 and Its Use as Hydrogenation Catalyst[J]. Catal Commun,2008,9(6):1286-1290.

    12. [12]

      [12] Ramos-Fernandez E V,Pieters C,Linden B,et al. Highly Dispersed Platinum in Metal Organic Framework NH2-MIL-101(Al) Containing Phosphotungstic Acid-Characterization and Catalytic Performance[J]. J Catal,2012,289:42-52.

    13. [13]

      [13] Fazaeli R,Aliyan H,Moghadam M,et al. Nano-rod Catalysts: Building MOF Bottles(MIL-101 Family as Heterogeneous Single-site Catalysts) Around Vanadium Oxide Ships[J]. J Mol Catal A:Chem,2013,374/375:46-52.

    14. [14]

      [14] Schejn A,Mazet T,Falk V,et al. Fe3O4@ZIF-8:Magnetically Recoverable Catalystsby Loading Fe3O4 Nanoparticles Inside a Zinc Imidazolate Framework[J]. Dalton Trans,2015,44(22):10136-10140.

    15. [15]

      [15] Liu D M,Lu K D,Poon C,et al. Metal-Organic Frameworks as Sensory Materials and Imaging Agents[J]. Inorg Chem,2014,53(4):1916-1924.

    16. [16]

      [16] Hermes S,Schroder F,Chelmowski R,et al. Selective Nucleation and Growth of Metal-Organic Open Framework Thin Films on Patterned COOF/CF3-Terminated Self-Assembled Monolayers on Au(111)[J]. J Am Chem Soc,2005,127(40):13744-13745.

    17. [17]

      [17] Bux H,Chmelik C,Krishna R,et al. Ethene/ethane Separation by the MOF Membrane ZIF-8:Molecular Correlation of Permeation, Adsorption,Diffusion[J]. J Membr Sci,2011,369(1/2):284-289.

    18. [18]

      [18] Zhang F,Zou X Q,Gao X,et al. Hydrogen Selective NH2-MIL-53(Al) MOF Membranes with High Permeability[J]. Adv Funct Mater,2012,22(17):3583-3590.

    19. [19]

      [19] Kathuria A,Al-Ghamdi S,Abiad M G,et al. The Influence of Cu3(BTC)2 Metal Organic Framework on the Permeability and Perm-selectivity of PLLA-MOF Mixed Matrix Membranes[J]. J Appl Polym S,2015,132(46):42764-42773.

    20. [20]

      [20] Shekhah O,Cadiau A,Eddaoudi M. Fabrication and Non-covalent Modification of Highly Oriented Thin Films of a Zeolite-like Metal-Organic Framework(ZMOF) with Rho Topology[J]. Cryst Eng Comm,2015,17(2):290-294.

    21. [21]

      [21] Cavka J H,Jakobsen S,Olsbye U,et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with ExceptionalStability[J]. J Am Chem Soc,2008,130(42):13850-13851.

    22. [22]

      [22] Piscopo G,Polyzoidis A,Schwarzer M,et al. Stability of UiO-66 Under Acidic Treatment: Opportunities and Limitations for Post-synthetic Modifications[J]. Micropor Mesopor Mater,2015,208:30-35.

    23. [23]

      [23] Ramsahye N A,Gao J,Jobic H,et al. Adsorption and Diffusion of Light Hydrocatbons in UiO-66(Zr):A Combination of Experimental and Modeling Tools[J]. J Phys Chem C,2014,118(47):27470-27482.

    24. [24]

      [24] Valenzano L,Civalleri B,Chavan S,et al. Disclosing the Complex Structure of UiO-66 Metal Organic Framework:A Synergic Combination of Experiment and Theory[J]. Chem Mater,2011,23(7):1700-1718.

    25. [25]

      [25] Schaate A,Roy P,Godt A,et al. Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals[J]. Chem Eur J,2011,17(24):6643-6651.

    26. [26]

      [26] Ren J W,Langmi H W,North B C,et al. Modulated Synthesis of Zirconium-Metal Organic Framework(Zr-MOF) for Hydrogen Storage Applications[J]. Int J Hydrogen Energy,2014,39(2):890-895.

    27. [27]

      [27] ien S,Wragg D,Reinsch H,et al. Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal-Organic Frameworks[J]. Cryst Growth Des,2014,14(11):5370-5372.

    28. [28]

      [28] Tsuruoka T,Furukawa S,Takashima Y,et al. Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth[J]. Angew Chem Int Ed,2009,48(26):4739-4743.

    29. [29]

      [29] Diring S,Furukawa S,Takashima Y,et al. Controlled Multiscale Synthesis of Porous Coordination Polymer in Nano/Micro Regimes[J]. Chem Mater,2010,22(16):4531-4538.

    30. [30]

      [30] Han Y T,Liu M,Li K Y,et al. Facile Synthesis of Morphology- and Size-controlled Zirconium Metal-Organic Framework UiO-66:The Role of Hydrofluoric Acid in Crystallization[J]. Cryst Eng Comm,2015,17(33):6434-6440.

    31. [31]

      [31] Wu H,Chua Y S,Krungleviciute V,et al. Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic Framework UiO-66 and Their Important Effects on Gas Adsorption[J]. J Am Chem Soc,2013,135(28):10525-10532.

    32. [32]

      [32] Vermoortele F,Bueken B,Bars G L,et al. Synthesis Modulation as a Tool to Increase the Catalytic Activity of Metal-Organic Frameworks:The Unique Case of UiO-66(Zr)[J]. J Am Chem Soc,2013,135(31):11465-11468.

    33. [33]

      [33] Shearer G C,Chavan S,Ethiraj J,et al. Tuned to Perfection:Ironing Out the Defects in Metal-Organic Framework UiO-66[J]. Chem Mater,2014,26(14):4068-4071.

    34. [34]

      [34] Abid H R,Ang H M,Wang Shaobin. Effects of Ammonium Hydroxide on the Structure and Gas Adsorption of Nanosized Zr-MOFs(UiO-66)[J]. Nanoscale,2012,4(10):3089-3094.

    35. [35]

      [35] Wiersum A D,Soubeyrand-Lenoir E,Yang Qingyuan,et al. An Evaluation of UiO-66 for Gas-based Application[J]. Chem Asian J,2011,6(12):3270-3280.

    36. [36]

      [36] Katz M J,Brown Z J,Colon Y J,et al. A Facile Synthesis of UiO-66,UiO-67 and Their Derivatives[J]. Chem Commun,2013,49(82):9449-9451.

    37. [37]

      [37] Ragon F,Horcajada P,Chevreau H,et al. In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66[J]. Inorg Chem,2014,53(5):2491-2500.

    38. [38]

      [38] Kandiah M,Nilsen M H,Usseglio S,et al. Synthesis and Stability of Tagged UiO-66 Zr-MOFs[J]. Chem Mater,2010,22(24):6632-6640.

    39. [39]

      [39] Garibay S J,Cohen S M. Isoreticular Synthesis and Modification of Frameworks with the UiO-66 Topology[J]. Chem Commun,2010,46(41):7700-7702.

    40. [40]

      [40] Biswas S,Zhang J,Li Z B,et al. Enhanced Selectivity of CO2 over CH4 in Sulphonate-, Carboxylate- and Iodo-functionalized UiO-66 Frameworks[J]. Dalton Trans,2013,42(13):4730-4737.

    41. [41]

      [41] Huang Y T,Qin W P,Li Z,et al. Enhanced Stability and CO2 Affinity of a UiO-66 Type Metal-Organic Framework Decorated with Dimethyl Groups[J]. Dalton Trans,2012,41(31):9283-9285.

    42. [42]

      [42] Shen L J,Liang R W,Luo M B,et al. Electronic Effects of Ligand Substitution on Metal-Organic Framework Photocatalysts:The Case Study of UiO-66[J]. Phys Chem Chem Phys,2015,17(1):117-121.

    43. [43]

      [43] Cmarik G E,Kim M,Cohen S M,et al. Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization[J]. Langmuir,2012,28(44):15606-15613.

    44. [44]

      [44] Fei H H,Shin J W,Meng Y S,et al. Reusable Oxidation Catalysis Using Metal-monocatecholato Speciesin a Robust Metal-Organic Framework[J]. J Am Chem Soc,2014,136(13):4965-4973.

    45. [45]

      [45] Fei H H,Cohen S M. Metalation of a Thiocatechol-Functionalized Zr(Ⅳ)-Based Metal-Organic Framework for Selective C—H Functionalization[J]. J Am Chem Soc,2015,137(6):2191-2194.

    46. [46]

      [46] Shearer G C,Forselv S,Chavan S,et al. In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67[J]. Top Catal,2013,56(9/10):770-782.

    47. [47]

      [47] Lau C H,Babarao R,Hill M R. A Route to Drastic Increase of CO2 Uptake in Zr Metal Organic Framework UiO-66[J]. Chem Commun,2013,49(35):3634-3636.

    48. [48]

      [48] Yuan Q Y,Iersum A D,Llewellyn P L,et al. Functionalizing Porous Zirconium Terephthalate UiO-66(Zr) for Natural Gas Upgrading:A Computational Exploration[J]. Chem Commun,2011,47(34):9603-9605.

    49. [49]

      [50] Ebrahim A M,Bandosz T J. Ce(Ⅲ) Doped Zr-Based MOFs as Excellent NO2 Adsorbents at Ambient Conditions[J]. Appl Mater Interfaces,2013,5(21):10565-10573.

    50. [50]

      [51] Moreira M A,Santos J C,Ferreira A F P,et al. Reverse Shape Selectivity in the Liquid-Phase Adsorption of Xylene Isomers in Zirconium Terephthalate MOF UiO-66[J]. Langmuir,2012,28(13):5715-5723.

    51. [51]

      [52] Vermoortele F,Ameloot R,VimontA,et al. An Amino-modified Zr-terephthalate Metal-Organic Framework as an Acid-base Catalyst for Cross-aldol Condensation[J]. Chem Commun,2011,47(5):1521-1523.

    52. [52]

      [53] Chung Y M,Kim H Y,Ahn W S. Friedel-Crafts Acylation of p-Xylene over Sulfonated Zirconium Terephthalates[J]. Catal Lett,2014,144(5):817-824.

    53. [53]

      [54] Silva C G,Luz I,Llabrés i Xamena F X,et al. Water Stable Zr-Benzene Dicarboxylate Metal-Organic Frameworks as Photocatalysts for Hydrogen Generation[J]. Chem Eur J,2010,16(36):11133-11138.

    54. [54]

      [55] He J,Wang J Q,Chen Y J,et al. A Dye-sensitized Pt@UiO-66(Zr) Metal-Organic Framework for Visible-light Photocatalytic Hydrogen Production[J]. Chem Commun,2014,50(53):7063-7066.

    55. [55]

      [56] Yuan Y P,Yin L S,Cao S W,et al. Improving Photocatalytic Hydrogen Productionof Metal-organic Framework UiO-66 Octahedrons by Dye-Sensitization[J]. Appl Catal B,2015,168/169:572-576.

    56. [56]

      [57] Sha Z,Sun J L,Sze On Chan H,et al. Bismuth Tungstate Incorporated Zirconium Metal-Organic Framework Composite with Enhanced Visible-light Photocatalytic Performance[J]. RSC Adv,2014,4(110):64977-64984.

    57. [57]

      [58] Sha Z,Wu J S. Enchanted Visible-Light Photocatalytic Performance of BiOBr/UiO-66 Composite for Dye Degradation with the Assistant of UiO-66[J]. RSC Adv,2015,5(49):39592-39600.

    58. [58]

      [59] Na K,Choi K M,Yaghi O M,et al. Metal Nanocrystals Embedded in Single Nanocrystals of MOFs Give Unusual Selectivity as Heterogeneous Catalysts[J]. Nano Lett,2014,14(10):5979-5983.

    59. [59]

      [60] Choi K M,Na K,Somoriai G A,et al. Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal-Organic Frameworks[J]. J Am Chem Soc,2015,137(24):7810-7816.

    60. [60]

      [61] Shahat A,Hassana H M A,Azzazy H M E. Optical Metal-Organic Framework Sensor for Selective Discrimination of Some Toxic Metal Ions in Water[J]. Anal Chim Acta,2013,793(2):90-98.

    61. [61]

      [62] Xu X Y,Yan B. Eu(Ⅲ) Functionalized Zr-based Metal-Organic Framework as Excellent Fluorescent Probe for Cd2+ Detection in Aqueous Environment[J]. Sens Actuators B,2016,222:347-353.

    62. [62]

      [63] Liu X L,Demir N K,Wu Z T,et al. Highly Water-Stable Zirconium Metal-Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination[J]. J Am Chem Soc,2015,137(22):6999-7002.

    63. [63]

      [64] Fei H H,Pullen S,Wagner A,et al. Functionalization of Robust Zr(Ⅳ)-based Metal-Organic Framework Films via a Postsynthetic Ligand Exchange[J]. Chem Commun,2015,51(1):66-69.

    64. [64]

      [65] Chang N,Yan X P. Exploring Reverse Shape Selectivity and Molecular Sieving Effect of Metal-Organic Framework UiO-66 Coated Capillary Column for Gas Chromatographic Separation[J]. J Chromatogr A,2012,1257:116-124.

    65. [65]

      [66] Zhao WW,Zhang C Y,Yan Z G,et al. Separations of Substituted Benzenes and Polycyclic Aromatichydrocarbons Using Normal- and Reverse-phase High Performance Liquid Chromatography with UiO-66 as the Stationary Phase[J]. J Chromatogr A,2014,1370:121-128.

    66. [66]

      [67] de Krafft K E,Boyle W S,Burk L M,et al. Zr- and Hf-based Nanoscale Metal-Organic Frameworks as Contrast Agents for Computed Tomography[J]. J Mater Chem,2012,22(35):18139-18141.

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    11. [11]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    15. [15]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    16. [16]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    17. [17]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

Metrics
  • PDF Downloads(1)
  • Abstract views(1723)
  • HTML views(473)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return