Citation: CHU Chengcan, SU Zhaohui. Recent Progress in the Synthesis and Catalytic Application of Polymer-Supported Nanomaterials[J]. Chinese Journal of Applied Chemistry, ;2016, 33(4): 379-390. doi: 10.11944/j.issn.1000-0518.2016.04.150328 shu

Recent Progress in the Synthesis and Catalytic Application of Polymer-Supported Nanomaterials

  • Corresponding author: SU Zhaohui, 
  • Received Date: 7 September 2015
    Available Online: 10 December 2015

    Fund Project:

  • Nanomaterials find extensive application in various fields due to their small sizes and large specific surface areas. Immobilization of nanoparticles on polymer supports can improve their dispersion and stability and thus improve their performance. This paper reviews the recent progress in the synthesis of polymer-supported nanomaterials and discusses the application of these materials in the catalysis field.
  • 加载中
    1. [1]

      [1] Koch C C. Nanostructured Materials Processing, Properties and Potential Applications[M]. New York:Noyes Publications,2002:3-5.

    2. [2]

      [2] Shi F G. Size Dependent Thermal Vibrations and Melting in Nanocrystals[J]. J Mater Res,1994,9(5):1307-1313.

    3. [3]

      [3] Gangopadhyay S,Hadjianyis G C. Magnetic Properties of Ultrafine Iron Particles[J]. Phys Rev B,1992,45(17):9778-9787.

    4. [4]

      [4] Liz-Marzán L M,Giersig M,Mulvaney P. Synthesis of Nanosized Gold-Silica Core-Shell Particles[J]. Langmuir,1996,12(8):4329-4335.

    5. [5]

      [5] Lee S W,Kim B S,Chen S,et al. Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Application[J]. J Am Chem Soc,2009,131(2):671-679.

    6. [6]

      [6] Abad A,Corma A,García H. Catalyst Parameters Determining Activity and Selectivity of Supported Gold Nanoparticles for the Aerobic Oxidation of Alcohols:The Molecular Reaction Mechanism[J]. Chem A Eur J,2008,14(1):212-222.

    7. [7]

      [7] Ferrando R,Jellinek J,Johnston R L. Nanoalloys from Theory to Applications of Alloy Clusters and Nanoparticles[J]. Chem Rev,2008,108(3):846-910.

    8. [8]

      [8] Wang D S,Li Y D. Bimetallic Nanocrystals Liquid-Phase Synthesis and Catalytic Applications[J]. Adv Mater,2011,23(9):1044-1060.

    9. [9]

      [9] Reddy L H,Arias J L,Nicolas J,et al. Magnetic Nanoparticles Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications[J]. Chem Rev,2012,112(11):5818-5878.

    10. [10]

      [10] Wanjala B N,Luo J,Loukrakpam R,et al. Nanoscale Alloying, Phase-Segregation, and Core-Shell Evolution of Gold-Platinum Nanoparticles and Their Electrocatalytic Effect on Oxygen Reduction Reaction[J]. Chem Mater,2010,22(14):4282-4294.

    11. [11]

      [11] Voorn D J,Ming W,Herk A M. Polymer-Clay Nanocomposite Latex Particles by Inverse Pickering Emulsion Polymerization Stabilized with Hydrophobic Montmorillonite Platelets[J]. Macromolecules,2006,39(6):2137-2143.

    12. [12]

      [12] Zhang P,Shao C L,Zhang Z Y,et al. In situ Assembly of Well-Dispersed Ag Nanoparticles(AgNPs) on Electrospun Carbon Nanofibers(CNFs) for Catalytic Reduction of 4-Nitrophenol[J]. Nanoscale,2011,3(8):3357-3363.

    13. [13]

      [13] Jiang H L,Akita T,Ishida T,et al. Synergistic Catalysis of Au@Ag Core-Shell Nanoparticles Stabilized on Metal-Organic Framework[J]. J Am Chem Soc,2011,133(5):1304-1306.

    14. [14]

      [14] Tong H,Ouyang S X,Bi Y P,et al. Nano-Photocatalytic Materials:Possibilities and Challenges[J]. Adv Mater,2012,24(2):229-251.

    15. [15]

      [15] Nezakati T,Tan A,Seifalian A M. Enhancing the Electrical Conductivity of a Hybrid POSS-PCL/Graphene Nanocomposite Polymer[J]. J Colloid Interface Sci,2014,435:145-155.

    16. [16]

      [16] Ravia M,Kumar K K,Mohan V M,et al. Effect of Nano TiO2 Filler on the Structural and Electrical Properties of PVP Based Polymer Electrolyte Films[J]. Polym Test,2014,33:152-160.

    17. [17]

      [17] Dufresne A,Cavaillé J Y,Helbert W. New Nanocomposite Materials Microcrystalline Starch Reinforced Thermoplastic[J]. Macromolecules,1996,29(23):7624-7626.

    18. [18]

      [18] Chen X H,Gonsalves K E. Synthesis and Properties of an Aluminum Nitride Polyimide Nanocomposite Prepared by a Nonaqueous Suspension Process[J]. J Mater Res,1997,12(5):1274-1286.

    19. [19]

      [19] Gorrasi G,Milone C,Piperopoulos E,et al. Hybrid Clay Mineral-Carbon Nanotube-PLA Nanocomposite Films. Preparation and Photodegradation Effect on their Mechanical, Thermal and Electrical Properties[J]. Appl Clay Sci,2013,71:49-54.

    20. [20]

      [20] Gray D H,Hu S L,Juang E,et al. Highly Ordered Polymer-Inorganic Nanocomposites via Monomer Self Assembly:in situ Condensation Approach[J]. Adv Mater,1997,9(9):731-736.

    21. [21]

      [21] Jang J,Kim S,Lee K J. Fabrication of CdS/PMMA Core/shell Nanoparticles by Dispersion Mediated Interfacial Polymerization[J]. Chem Commun,2007,26:2689-2691.

    22. [22]

      [22] Zhang J G,Coombs N,Kumacheva E. A New Approach to Hybrid Nanocomposite Materials with Periodic Structures[J]. J Am Chem Soc,2002,124(49):14512-14513.

    23. [23]

      [23] Zhao M Q,Sun L,Crooks R M. Preparation of Cu Nanoclusters within Dendrimer Templates[J]. J Am Chem Soc,1998,120(19):4877-4878.

    24. [24]

      [24] Knecht M R,Weir M G,Myers V S,et al. Synthesis and Characterization of Pt Dendrimer-Encapsulated Nanoparticles Effect of the Template on Nanoparticle Formation[J]. Chem Mater,2008,20(16):5218-5228.

    25. [25]

      [25] Wilson O M,Knecht M R,Garcia-Martinez J C,et al. Effect of Pd Nanoparticle Size on the Catalytic Hydrogenation of Allyl Alcohol[J]. J Am Chem Soc,2006,128(14):4510-4511.

    26. [26]

      [26] Wilson O M,Scott R W J,Garcia-Martinez J C,et al. Synthesis, Characterization, and Structure-Selective Extraction of 1~3 nm Diameter AuAg Dendrimer-Encapsulated Bimetallic Nanoparticles[J]. J Am Chem Soc,2005,127(3):1015-10249.

    27. [27]

      [27] Scott R W J,Wilson O M,Oh S K,et al. Bimetallic Palladium-Gold Dendrimer-Encapsulated Catalysts[J]. J Am Chem Soc,2004,126(47):15583-155919.

    28. [28]

      [28] Ye H C,Crooks R M. Effect of Elemental Composition of PtPd Bimetallic Nanoparticles Containing an Average of 180 Atoms on the Kinetics of the Electrochemical Oxygen Reduction Reaction[J]. J Am Chem Soc,2007,129(12):3627-3633.

    29. [29]

      [29] Safronov V,Kudriavcev V V,Lebedeva G K,et al. Preparation of Langmuir-Blodgett Films of Three-Component Copolymers Containing Chromophore Groups[J]. Mater Sci Eng C,1998,5(3/4):285-287.

    30. [30]

      [30] Zhao X K,Fendler J H. Size Quantization in Pemiconductor Particulate Films[J]. J Phys Chem,1991,95(9):3716-3723.

    31. [31]

      [31] Yang J P,Meldrum F C,Fendler J H. Epitaxial Growth of Size-Quantized Cadmium Sulfide Crystals under Arachidic Acid Monlayers[J]. J Phys Chem,1995,99(15):5500-5504.

    32. [32]

      [32] Dhanabalan A,Kudrolli H,Major S S,et al. Structure of CdS Nanoparticles Containing Cadmium Arachidate LB Films[J]. Solid State Commun,1996,99(11):859-862.

    33. [33]

      [33] Decher G. Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites[J]. Science,1997,277(5330):1232-1237.

    34. [34]

      [34] Zan X,Su Z H. Ion Dispositions in Polyelectrolyte Multilayer Films[J]. Macromolecules,2012,45(21):8805-8812.

    35. [35]

      [35] Lourenco J M C,Ribeiro P A,Rego A M B,et al. Counterions in Poly(allylamine hydrochloride) and Poly(styrene sulfonate) Layer-by-Layer Films[J]. Langmuir,2004,20(19):8103-8109.

    36. [36]

      [36] Tanchak O M,Yager K G,Fritzsche H,et al. Ion Distribution in Multilayers of Weak Polyelectrolytes:A Neutron Reflectometry Study[J]. J Chem Phys,2008,129(8):084901-084910.

    37. [37]

      [37] Xiong H M,Cheng M H,Zhou Z,et al. A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles[J]. Adv Mater,1998,10(7):527-532.

    38. [38]

      [38] Xiong H M,Zhou Z,Wang Z Q,et al. A New Approach to Fabrication of a Self-Organizing Film of Heterostructured Polymer/CdS Nanoparticles[J]. Supramol Sci,1998,5(6):623-626.

    39. [39]

      [39] Joly S,Kane R,Radzilowski L,et al. Multilayer Nanoreactors for Metallic and Semiconducting Particles[J]. Langmuir,2000,16(3):1354-1359.

    40. [40]

      [40] Zan X J,Su Z H. Incorporation of Nanoparticles into Polyelectrolyte Multilayers via Counterion Exchange and in situ Reduction[J]. Langmuir,2009,25(20):12355-12360.

    41. [41]

      [41] Zhang X,Su Z H. Polyelectrolyte-Multilayer-Supported Au@Ag Core-Shell Nanoparticles with High Catalytic Activity[J]. Adv Mater,2012,24(33):4574-4577.

    42. [42]

      [42] Zhang X,Zan X J,Su Z H. Polyelectrolyte Multilayer Supported Pt Nanoparticles as Catalysts for Methanol Oxidation[J]. J Mater Chem,2011,21(44):17783-17789.

    43. [43]

      [43] ZHANG Xin,CHU Chengcan,HUANG Kaihua,et al. Preparation of Au@Pt Core-Shell Nanoparticles Using Polyelectrolyte Multilayers as Nanoreactors[J]. Chinese J Appl Chem,2012,29(12):1433-1437(in Chinese).张信,储诚灿,黄凯华,等. 以聚电解质多层膜为纳米反应器制备Au@Pt核壳纳米粒子[J]. 应用化学,2012,29(12):1433-1437.

    44. [44]

      [44] Zhang X,Zhang G Y,Zhang B D,et al. Synthesis of Hollow Ag-Au Bimetallic Nanoparticles in Polyelectrolyte Multilayers[J]. Langmuir,2013,29(22):6722-6727.

    45. [45]

      [45] Kidambi S,Dai J H,Jin L,et al. Selective Hydrogenation by Pd Nanoparticles Embedded in Polyelectrolyte Multilayers[J]. J Am Chem Soc,2004,126(9):2658-2659.

    46. [46]

      [46] Chu C,Su Z H. Facile Synthesis of AuPt Alloy Nanoparticles in Polyelectrolyte Multilayers with Enhanced Catalytic Activity for Reduction of 4-Nitrophenol[J]. Langmuir,2014,30(50):15345-15350.

    47. [47]

      [47] Schrinner M,Proch S,Mei Y,et al. Stable Bimetallic Gold-Platinum Nanoparticles Immobilized on Spherical Polyelectrolyte Brushes:Synthesis, Characterization, and Application for the Oxidation of Alcohols[J]. Adv Mater,2008,20(10):1928-1933.

    48. [48]

      [48] Lang H F,Maldonado S,Stevenson K J,et al. Synthesis and Characterization of Dendrimer Templated Supported Bimetallic Pt-Au Nanoparticles[J]. J Am Chem Soc,2004,126(40):12949-12956.

    49. [49]

      [49] Tian L,Qi Y J,Wang B. Electrochemical Preparation and Structural Characterization of Platinum Thin Film on a Polypyrrole Film Modified ITO Electrode[J]. J Colloid Interface Sci,2009,333(1):249-253.

    50. [50]

      [50] Chen Z W,Xu L B,Li W Z,et al. Polyaniline Nanofibre Supported Platinum Nanoelectrocatalysts for Direct Methanol Fuel Cells[J]. Nanotechnology,2006,17(20):5254-5259.

    51. [51]

      [51] Drillet J F,Dittmeyer R,J ttner K. Activity and Long-Term Stability of PEDOT as Pt Catalyst Support for the DMFC Anode[J]. J Appl Electrochem,2007,37(11):1219-1226.

    52. [52]

      [52] Nagashree K L,Raviraj N H,Ahmed M F. Carbon Paste Electrodes Modified by Pt and Pt Ni Microparticles Dispersed in Polyindole Film for Electrocatalytic Oxidation of Methanol[J]. Electrochim Acta,2010,55(8):2629-2635.

    53. [53]

      [53] Markarian M Z,Harakeh M E,Halaoui L I. Adsorption of Atomic Hydrogen at a Nanostructured Electrode of Polyacrylate-Capped Pt Nanoparticles in Polyelectrolyte[J]. J Phys Chem B,2005,109(23):11616-11621.

    54. [54]

      [54] Shiraishi Y,Sakamoto H,Sugano Y,et al. PtCu Bimetallic Alloy Nanoparticles Supported on Anatase TiO2 Highly Active Catalysts for Aerobic Oxidation Driven by Visible Light[J]. ACS Nano,2013,7(10):9287-9297.

    55. [55]

      [55] Tada H,Mitsui T,Kiyonaga T,et al. All-Solid-State Z-Scheme in CdS-Au-TiO2 Three-Component Nanojunction System[J]. Nat Mater,2006,5(10):782-786.

    56. [56]

      [56] Hu Y,Gao X H,Yu L,et al. Carbon-Coated CdS Petalous Nanostructures with Enhanced Photostability and Photocatalytic Activity[J]. Angew Chem Int Ed,2013,125(21):5746-5749.

    57. [57]

      [57] Ke D N,Liu S L,Dai K,et al. CdS/Regenerated Cellulose Nanocomposite Films for Highly Efficient Photocatalytic H2 Production under Visible Light Irradiation[J]. J Phys Chem C,2009,113(36):16021-16026.

    58. [58]

      [58] Sansiviero M T C,Santos D S,Job A E,et al. Layer by Layer TiO2 Thin Films and Photodegradation of Congo Red[J]. J Photochem Photobiol A:Chem,2011,220(1):20-24.

    59. [59]

      [59] Zhu Y,Dan Y. Photocatalytic Activity of Poly(3-hexylthiophene)/Titanium Dioxide Composites for Degrading Methyl Orange[J]. Sol Energy Mater Sol C,2010,94(10):1658-1664.

  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    6. [6]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    7. [7]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    8. [8]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    9. [9]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    12. [12]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    20. [20]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

Metrics
  • PDF Downloads(1)
  • Abstract views(234)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return