Citation: DING Ding, WANG Qi, JIN Fang, CHEN Yazhong, CUI Peng, LIU Rong, SHEN Hao. Influences of the Ammonia Evaporation Pressure on the Structure of Cu/SiO2 Catalysts and Catalytic Performances for Dimethyl Oxalate Hydrogenation to Ethylene Glycol[J]. Chinese Journal of Applied Chemistry, ;2016, 33(4): 466-472. doi: 10.11944/j.issn.1000-0518.2016.04.150288 shu

Influences of the Ammonia Evaporation Pressure on the Structure of Cu/SiO2 Catalysts and Catalytic Performances for Dimethyl Oxalate Hydrogenation to Ethylene Glycol

  • Corresponding author: WANG Qi, 
  • Received Date: 12 August 2015
    Available Online: 20 November 2015

    Fund Project:

  • A series of Cu/SiO2 catalysts with 20.0% mass fraction of Cu loading was prepared by the ammonia evaporation method using SiO2 as the support and Cu(NH3)42+ aqueous solutions as the precursor. The catalysts were characterized through X-ray diffraction(XRD), H2-temperaure programmed reduction(H2-TPR), transmission electronic microscopy(TEM) and X-ray Auger spectra(XAES) to investigate the influence of the ammonia evaporation rate on the catalyst physical and chemical structure and its catalytic performance for the hydrogenation of dimethyl oxalate(DMO) to ethylene glycol(EG). The catalytic activity measurement experiments were performed under working conditions of 200 ℃, p=3.0 MPa, LHSV=0.4 h-1 and the molar ratio of hydrogen to DMO(n(H2):n(DMO)=80:1). The results indicate that the catalyst prepared under high vacuum during ammonia evaporation has better catalytic performance. For the catalyst prepared under ammonia evaporation pressure of 31.3 kPa, 99.9% conversion of DMO and 94.4% selectivity to EG are obtained. Characterizations through XRD, H2-TPR, TEM and XAES suggest that the higher the ammonia evaporation rate, the faster and more uniform distribution of copper precursors upon the SiO2 support, and the coagulation and growth of the Cu particles during calcination and reduction can be reduced, which guarantees the high catalytic activity, particularly the selectivity to EG.
  • 加载中
    1. [1]

      [1] HUANG Gesheng,LI Zhenyu,LI Dingjie,et al. Analysis of Current Technologies and Prospects of Ethanediol Produced from Oil and Coal[J]. Chem Ind Eng Prog,2011,30(7):1461-1465(in Chinese).黄格省,李振宇,李顶杰,等. 石油和煤生产乙二醇技术现状及产业前景分析[J]. 化工进展,2011,30(7):1461-1465.

    2. [2]

      [2] SONG Heyuan,JIN Ronghua,KANG Meirong,et al. Progress in Synthesis of Ethylene Glycol through C1 Chemical Industry Routes[J]. Chinese J Catal,2013,34(6):1035-1050(in Chinese).宋河远,靳荣华,康美荣,等. 碳一化工路线制备乙二醇研究进展[J]. 催化学报,2013,34(6):1035-1050.

    3. [3]

      [3] LIN Ling,PAN Pengwu,ZHOU Zhangfeng,et al. Cu/SiO2 Catalysts Prepared by the Sol-Gel Method for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol[J]. Chinese J Catal,2011,32(S6/7/8):957-969(in Chinese).林凌,潘鹏武,周张峰,等. 溶胶凝胶法制备的Cu/SiO2催化剂及其催化草酸二甲酯加氢反应[J]. 催化学报,2011,32(S6/7/8):957-969.

    4. [4]

      [4] WANG Baowei,ZHANG Xu,XU Qian,et al. Preparation and Characterization of Cu/SiO2 Catalyst and Its Catalytic Activity for Hydrogenation of Diethyl Oxalate to Ethylene Glycol[J]. Chinese J Catal,2008,29(3):275-280(in Chinese).王保伟,张旭,许茜,等. Cu/SiO2催化剂的制备、表征及其对草酸二乙酯加氢制乙二醇的催化性能[J]. 催化学报,2008,29(3):275-280.

    5. [5]

      [5] Chen L F,Guo P J,Qiao M H,et al. Cu/SiO2 Catalysts Prepared by the Ammonia-evaporation Method:Texture, Structure and Catalytic Performance in Hydrogenation of Dimethyl Oxalate to Ethylene Glycol[J]. J Catal,2008,257(1):172-180.

    6. [6]

      [6] LI Zhenhua,XU Genhui,WANG Haijing,et al.Effect of the Preparation of Cu-based Catalyst on the Hydrogenation of Diethyl Oxlate[J]. Chinese J Catal,1995,16(1):9-14(in Chinese).李振花,许根慧,王海京,等. 铜基催化剂的制备方法对草酸二乙酯加氢反应的影响[J]. 催化学报,1995,16(1):9-14.

    7. [7]

      [7] Zhao S,Yue H R,Zhao Y J,et al. Chemoselective Synthesis of Ethanol via Hydrogenation of Dimethyl Oxalate on Cu/SiO2:Enhanced Stability with Boron Dopant[J]. J Catal,2013,297(1):142-150.

    8. [8]

      [8] Ma X B,Chi H W,Yue H R,et al. Hydrogenation of Dimethyl Oxalate to Ethylene Glycol over Mesoporous Cu-MCM-41 Catalysts[J]. AIChE J,2013,59(7):2530-2539.

    9. [9]

      [9] Zhao L,Zhao Y J,Wang S P,et al. Hydrogenation of Dimethyl Oxalate Using Extruded Cu/SiO2 Catalysts:Mechanical Strength and Catalytic Performance[J]. Ind Eng Chem Res,2012,51(43):13935-13943.

    10. [10]

      [10] Chen L Y,Horiuchi T,Osaki T,et al. Catalytic Selective Reduction of NO with Propylene over Cu-Al2O3 Catalysts:Influence of Catalyst Preparation Method[J] Appl Catal B,1999,23(4):259-269.

    11. [11]

      [11] Marchi A J,Fierro J L G,Santamaria J,et al. Dehydrogenation of Isopropylic Alcholol on a Cu/SiO2 Catalyst:A Study of the Activity Evolution and Reactivation of the Catalyst[J]. Appl Catal A,1996,142(2):375-386.

    12. [12]

      [12] Li F,Lu C S,Li X N. The Effect of the Amount of Ammonia on the Cu0/Cu+ Ratio of Cu/SiO2 Catalyst for the Hydrogenation of Dimethyl Oxalate to Ethylene Glycol[J]. Chinese Chem Lett,2014,25(11):461-1465.

    13. [13]

      [13] Yin A Y,Guo X Y,Dai W L,et al. Highly Active and Selective Copper-containing HMS Catalyst in the Hydrogenation of Dimethyl Oxalate to Ethylene Glycol[J]. Appl Catal A,2008,349(s1/2):91-99.

    14. [14]

      [14] Zhao S,Yue H R,Zhao Y J,et al. Chemoselective Synthesis of Ethanol via Hydrogenation of Dimethyl Oxalate on Cu/SiO2:Enhanced Stability with Boron Dopant[J]. J Catal,2013,297(1):142-150.

    15. [15]

      [15] LI Zhuxia,QIAN Zhigang,ZHAO Xiuge,et al. Effect of Supports on Copper-Based Catalysts for Dimethyl Oxalates Hydrogenation[J]. J East China Univ Sci Technol(Nat Sci Ed)),2005,31:27-30(in Chinese).李竹霞,钱志刚,赵秀阁,等. 载体对草酸二甲酯加氢铜基催化剂的影响[J]. 华东理工大学学报(自然科学版),2005,31:27-30.

    16. [16]

      [16] Yin A Y,Guo X Y,Dai W L,et al. Effect of Initial Precipitation Temperature on the Structural Evolution and Catalytic Behavior of Cu/SiO2 Catalyst in the Hydrogenation of Dimethyloxalate[J]. Catal Commun,2011,12(6):412-416.

  • 加载中
    1. [1]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    6. [6]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    15. [15]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(2)
  • Abstract views(249)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return