Citation: HOU Shuhua, JI Debin, LIU Wujun, WANG Lei. Effect of Site-Directed Mutagenesis in Coenzyme-Binding Domain of Malic Enzyme on Coenzyme Activities for Nicotinamide Adenine Dinucleotide Analogs[J]. Chinese Journal of Applied Chemistry, ;2016, 33(4): 436-441. doi: 10.11944/j.issn.1000-0518.2016.04.150268 shu

Effect of Site-Directed Mutagenesis in Coenzyme-Binding Domain of Malic Enzyme on Coenzyme Activities for Nicotinamide Adenine Dinucleotide Analogs

  • Corresponding author: HOU Shuhua, 
  • Received Date: 28 July 2015
    Available Online: 8 December 2015

  • The cofactor-binding domains of malic enzyme(ME) L310, Q401 and L404 were found to have a steric effect on binding of nicotinamide adenine dinucleotide(NAD+). The site-directed mutagenesis of these three sites shows that the cofactor activities of NAD+ analogs(B1~B7) change in some level, indicating that these sites have a critical role in binding the cofactors. A high-throughput screen between malic enzyme mutants and NAD+ analogs affords 2 different mutants capable of taking NAD+ analogs as the cofactor. ME-Q401H/L404T has a 50-fold higher kcat/Km than the that of wild-type ME for the analog B4. For ME-L310M/Q401N, the kcat/Km are 16-fold and 5-fold higher than those of wild-type ME for the cofactors B4 and B3. The coenzyme activity can be increased through site-directed mutagenesis of cofactor-binding domains.
  • 加载中
    1. [1]

      [1] Pollak N,Dolle C,Ziegler M. The Power to Reduce:Pyridine Nucleotides-Small Molecules with a Multitude of Functions[J]. Biochem J,2007,402(2):205-218.

    2. [2]

      [2] Huisman G W,Liang J,Krebber A. Practical Chiral Alcohol Manufacture Using Ketoreductases[J]. Curr Opin Chem Biol,2010,14(2):122-129.

    3. [3]

      [3] Koszelewski D,Lavandera I,Clay D,et al. Formal Asymmetric Biocatalytic Reductive Amination[J]. Angew Chem Int Ed,2008,47(48):9337-9340.

    4. [4]

      [4] Liese A,Filho M. Production of fine Chemicals Using Biocatalysis[J]. Curr Opin Biotechnol,1999,10(6):595-603

    5. [5]

      [5] Hummel W. Large-scale Applications of NAD(P)-Dependent Oxidoreductases: Recent Developments[J]. Trends Biotechnol,1999,17(12):487-492.

    6. [6]

      [6] Gamenara D,Domínguez de María P. Candida spp. Redox Machineries:An Ample Biocatalytic Platform for Practical Applications and Academic Insights[J]. Biotechnol Adv,2009,27(14):278-285.

    7. [7]

      [7] JI Debin,WANG Lei,ZHOU Yongjin,et al. Oxidative Decarboxylation of L-Malate by Using a Synthetic Bioredox System[J]. Chinese J Catal,2012,33(51):530-535(in Chinese).纪德彬,王磊,周雍进,等. 利用人工氧还酶体系催化L-苹果酸酶氧化脱羧反应[J]. 催化学报,2012,33(51):530-535.

    8. [8]

      [8] Strohmeier G,Pichler H,May O,et al. Application of Designed Enzymes in Organic Synthesis[J]. Chem Rev,2011,111(7):4141-4164.

    9. [9]

      [9] Nobeli I,Favia A,Thornton J. Protein Promiscuity and Its Implications for Biotechnology[J]. Nat Biotechnol,2009,27(2):157-167.

    10. [10]

      [10] Peregrina J,Herguedas B,Hermoso J,et al. Protein Motifs Involved in Coenzyme Interaction and Enzymatic Efficiency in Anabaena Ferredoxin-NADP+ Reductase[J]. Biochemistry,2009,48(14):3109-3119.

    11. [11]

      [11] Ji D,Wang L,Hou S,et al. Creation of Bioorthogonal Redox Systems Depending on Nicotinamide Flucytosine Dinucleotide[J]. J Am Chem Soc,2011,133(51):20857-20862.

    12. [12]

      [12] Ji D,Wang L,Liu W,et al. Synthesis of NAD Analogs to Develop Bioorthogonal Redox System[J]. Sci China Chem,2013,56(3):296-300.

    13. [13]

      [13] Woodyer R,Donk W,Zhao H. Relaxing the Nicotinamide Cofactor Specificity of Phosphite Dehydrogenase by Rational Design[J]. Biochemistry,2003,42(40):11604-11614.

    14. [14]

      [14] Aktas D,Cook P. Role of Residues in the Adenosine Binding Site of NAD of the Ascaris Suum Malic Enzyme[J]. Biochim Biophys Acta,2008,1784(12):2059-2064.

    15. [15]

      [15] Hou S,Liu W,Ji D,et al. Synthesis of 1,2,3-Triazole Moiety-Containing NAD Analogs and Their Potential as Redox Cofactors[J]. Tetrahedron Lett,2011,52(44):5855-5857.

    16. [16]

      [16] Wang J,Zhang S,Tan H,et al. PCR-based Strategy for Construction of Multi-Site-Saturation Mutagenic Expression Library[J]. J Microbiol Meth,2007,71(3):225-230.

  • 加载中
    1. [1]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    2. [2]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    3. [3]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    4. [4]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    10. [10]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    11. [11]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    14. [14]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    18. [18]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    19. [19]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    20. [20]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

Metrics
  • PDF Downloads(0)
  • Abstract views(390)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return