Citation: DU Shanshan, ZHAO Chunyu, CHEN Hao, LUO Shiwen, GAO Mengmeng, XIN Zhirong. Preparation and Hemocompatibility of Polyurethane Films Grafted with an Unsaturated Sugar-Based Functional Monomer[J]. Chinese Journal of Applied Chemistry, ;2016, 33(4): 412-418. doi: 10.11944/j.issn.1000-0518.2016.04.150259 shu

Preparation and Hemocompatibility of Polyurethane Films Grafted with an Unsaturated Sugar-Based Functional Monomer

  • Corresponding author: XIN Zhirong, 
  • Received Date: 22 July 2015
    Available Online: 17 December 2015

    Fund Project:

  • A sugar-based functional monomer containing double bond was synthesized by the reaction of D-glucose, hydroxylethyl acrylate and 1,4-butanediamine. The as-prepared compound was confirmed by Fourier transform infrared spectroscopy(FTIR) and proton nuclear magnetic resonance spectroscopy(1H NMR). The unsaturated sugar monomer was grafted onto the surface of polyurethane(PU) films by UV-induced grafting polymerization. The surface grafting polymerization was confirmed by FTIR in the attenuated total reflection mode(ATR-FTIR). Water contact angle measurement and platelet adhesion were used to study the hydrophilicity and hemocompatibility of the modified PU films, respectively. It is found that the contact angle of modified PU films decreases from 86° to 45°, and the amount of platelet adhesion is reduced from 14.36×103 cells/mm2 to 2.57×103 cells/mm2. The hydrophilicity of the modified PU films is obviously enhanced and a more hemocompatible interface can be obtained between the film and the biomolecules.
  • 加载中
    1. [1]

      [1] Schreader K J,Bayer I S,Milner D J,et al. A Polyurethane-Based Nanocomposite Biocompatible Bone Adhesive[J]. J Appl Polym Sci,2013,127(6):4974-4982.

    2. [2]

      [2] Alves P,Cardoso R,Correia T R,et al. Surface Modification of Polyurethane Films by Plasma and Ultraviolet Light to Improve Haemocompatibility for Artificial Heart Valves[J]. Colloid Surf B,2014,113:25-32.

    3. [3]

      [3] Williams D F. On the Mechanisms of Biocompatibility[J]. Biomaterials,2008,29(20):2941-2953.

    4. [4]

      [4] Tan D S,Li Z,Yao X L,et al. The Influence of Fluorocarbon Chain and Phosphorylcholine on the Improvement of Hemocompatibility:A Comparative Study in Polyurethanes[J]. J Mater Chem B,2014,2(10):1344-1353.

    5. [5]

      [5] Muppalla R,Rana H H,Devi S,et al. Adsorption of Ph-Responsive Amphiphilic Copolymer Micelles and Gel on Membrane Surface as an Approach for Antifouling Coating[J]. Appl Surf Sci,2013,268:355-367.

    6. [6]

      [6] SHI Qiang,LUAN Shifang,JIN Jing,et al. Hemocompatibility of Commodity Polymers Modified with Chemical and Biological Method[J]. Mater China,2014,33(4):212-223(in Chinese).石强,栾世方,金晶,等. 通用高分子材料的化学和生物改性及其血液相容性研究[J]. 中国材料进展,2014,33(4):212-223.

    7. [7]

      [7] Zanini S,Riccardi C,Grimoldi E,et al. Plasma-Induced Graft-Polymerization of Polyethylene Glycol Acrylate on Polypropylene Films:Chemical Characterization and Evaluation of the Protein Adsorption[J]. J Colloid Interf Sci,2010,341(1):53-58.

    8. [8]

      [8] Xiu K M,Cai Q,Li J S,et al. Anti-Fouling Surfaces by Combined Molecular Self-Assembly and Surface-Initiated Atrp for Micropatterning Active Proteins[J]. Colloid Surf B,2012,90:177-183.

    9. [9]

      [9] Deng J P,Wang L F,Liu L Y,et al. Developments and New Applications of Uv-Induced Surface Graft Polymerizations[J]. Prog Polym Sci,2009,34(2):156-193.

    10. [10]

      [10] Zhao H Y,Feng Y K,Guo J T. Grafting of Poly(Ethylene Glycol) Monoacrylate onto Polycarbonateurethane Surfaces by Ultraviolet Radiation Grafting Polymerization to Control Hydrophilicity[J]. J Appl Polym Sci,2011,119(6):3717-3727.

    11. [11]

      [11] Shan B,Yan H,Shen J,et al. Ozone-Induced Grafting of a Sulfoammonium Zwitterionic Polymer onto Low-Density Polyethylene Film for Improving Hemocompatibility[J]. J Appl Polym Sci,2006,101(6):3697-3703.

    12. [12]

      [12] Li W H,Liu P B,Zou H W,et al. Ph Sensitive Microporous Polypropylene Membrane Prepared through Ozone Induced Surface Grafting[J]. Polym Adv Technol,2009,20(3):251-257.

    13. [13]

      [13] Zhao J,Shi Q A,Yin L G,et al. Polypropylene Modified with 2-Hydroxyethyl Acrylate-G-2-Methacryloyloxyethyl Phosphorycholine and Its Hemocompatibility[J]. Appl Surf Sci,2010,256(23):7071-7076.

    14. [14]

      [14] Deng J P,Yang T W,Ranby B. Surface Photografting Polymerization of Vinyl Acetate(Vac), Maleic Anhydride, and Their Chargee Transfer Complex. Vac(2)[J]. J Appl Polym Sci,2000,77(7):1522-1531.

    15. [15]

      [15] Sugiura S,Edahiro J I,Sumaru K,et al. Surface Modification of Polydimethylsiloxane with Photo-Grafted Poly(Ethylene Glycol) for Micropatterned Protein Adsorption and Cell Adhesion[J]. Colloid Surf B,2008,63(2):301-305.

    16. [16]

      [16] Li X M,Luan S F,Yang H W,et al. Surface Modification of Poly(Styrene-B-(Ethylene-Co-Butylene)-B-Styrene) Elastomer via Photo-Initiated Graft Polymerization of Poly(Ethylene Glycol)[J]. Appl Surf Sci,2012,258(7):2344-2349.

    17. [17]

      [17] Luan S F,Zhao J,Yang H W,et al. Surface Modification of Poly(Styrene-B-(Ethylene-Co-Butylene)-B-Styrene) Elastomer via Uv-Induced Graft Polymerization of N-Vinyl Pyrrolidone[J]. Colloid Surf B,2012,93:127-134.

    18. [18]

      [18] Xin Z R,Du B B,Yan S J,et al. Surface Modification of Polyurethane via Covalent Immobilization of Sugar-Based Trisiloxane Surfactants[J]. Des Monomers Polym,2015,18(3):284-294.

    19. [19]

      [19] Xin Z R,Yan S J,Du B B,et al. On Properties of Graft Copolymers of Lldpe and Novel Fluorine Surfactants Obtained via Reactive Extrusion[J]. Des Monomers Polym,2014,17(8):746-752.

    20. [20]

      [20] Cen L,Neoh K G,Kang E T. Surface Functionalization of Electrically Conductive Polypyrrole Film with Hyaluronic Acid[J]. Langmuir,2002,18(22):8633-8640.

    21. [21]

      [21] Li X M,Luan S F,Shi H C,et al. Improved Biocompatibility of Poly(Styrene-B-(Ethylene-Co-Butylene)-B-Styrene) Elastomer by a Surface Graft Polymerization of Hyaluronic Acid[J]. Colloid Surf B,2013,102:210-217.

    22. [22]

      [22] Zhao J,Shi Q A,Luan S F,et al. Improved Biocompatibility and Antifouling Property of Polypropylene Non-Woven Fabric Membrane by Surface Grafting Zwitterionic Polymer[J]. J Membr Sci,2011,369(1/2):5-12.

    23. [23]

      [23] Song L J,Zhao J,Luan S F,et al. Fabrication of a Detection Platform with Boronic-Acid-Containing Zwitterionic Polymer Brush[J]. ACS Appl Mater Interfaces,2013,5(24):13207-13215.

    24. [24]

      [24] Yang Q,Xu ZK,Dai ZW,et al. Surface Modification of Polypropylene Microporous Membranes with a Novel Glycopolymer[J]. Chem Mater,2005,17(11):3050-3058.

    25. [25]

      [25] Bordegé V,Muoz-Bonilla A,Leön O,et al.Glycopolymers with Glucosamine Pendant Groups Copolymeri Ation,Physico-Chemical and Interaction Properties[J]. React Funct Polym,2011,71:1-10.

    26. [26]

      [26] Cerrada M L,Bordege V,Munoz-Bonilla A,et al. Amphiphilic Polymers Bearing Gluconolactone Moieties:Synthesis and Long Side-Chain Crystalline Behavior[J]. Carbohydr Polym,2013,94(2):755-764.

    27. [27]

      [27] Choi H S,Kim Y S,Zhang Y,et al. Plasma-Induced Graft Co-Polymerization of Acrylic Acid onto the Polyurethane Surface[J]. Surf Coat Technol,2004,182(1):55-64.

    28. [28]

      [28] Brass L F. Thrombin and Platelet Activation[J]. Chest,2003,124(3):18s-25s.

    29. [29]

      [29] Skoglund C,Wettero J,Skogh T,et al. C-Reactive Protein and C1q Regulate Platelet Adhesion and Activation on Adsorbed Immunoglobulin G and Albumin[J]. Immunol Cell Biol,2008,86(5):466-474.

  • 加载中
    1. [1]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    2. [2]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    3. [3]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    4. [4]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    5. [5]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    6. [6]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    7. [7]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    9. [9]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    14. [14]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    15. [15]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    16. [16]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(0)
  • Abstract views(293)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return