Citation: XIE Fazhi, SHENG Dandan, HU Tingting, LI Haibin, WANG Xuechun, XIE Zhiyong. Adsorption Behavior and Mechanism of Pyrophosphate on Goethite[J]. Chinese Journal of Applied Chemistry, ;2016, 33(3): 343-349. doi: 10.11944/j.issn.1000-0518.2016.03.150243 shu

Adsorption Behavior and Mechanism of Pyrophosphate on Goethite

  • Corresponding author: XIE Fazhi, 
  • Received Date: 10 July 2015
    Available Online: 11 September 2015

    Fund Project:

  • In order to study the fate and transport behavior of polyphosphate in water body, the adsorption process of pyrophosphate on synthetic goethite which stablely exists in the supergene environment has been studied systematically. The adsorption behaviors under different conditions(pH, electrolyte, time, temperature) were investigated and the adsorption mechanism was discussed. The results indicate that the adsorption capacity decreases from 3.00 mg/g to 0.75 mg/g with the increase of pH from 6.27 to 10.99. The lower the electrolyte concentration, the more favorable to the adsorption. The adsorption characteristic within 48 h was investigated. The adsorption capacity increases rapidly within 1 h, and then reaches the adsorption equilibrium. Moreover, the adsorption capacity increases with the increase of the adsorption temperature. Kinetic models and thermodynamic models were used to analyze the adsorption process, and the results show that the adsorption is in accord with the pseudo second-order equation and Langmuir model. Furthermore, combined with the characterization of materials, the adsorption may be mainly based on surface complexation and physical adsorption.
  • 加载中
    1. [1]

      [1] Barca C,Gerente C,Meyer D,et al. Phosphate Removal from Synthetic and Real Wastewater Using Steel Slags Produced in Europe[J]. Water Res,2012,46(7):2376-2384

    2. [2]

      [2] Yan Y,Sun X,Ma F,et al. Removal of Phosphate from Wastewater Using Alkaline Residue[J]. J Environ Sci,2014,26(5):970-980.

    3. [3]

      [3] ZHOU Jishi. Mechanism and Synergistic Effect on Capture of Polyphosphate by Polynary Layered Double Hydroxide(LDH)[D]. Shanghai:Shanghai University,2011(in Chinese).周吉峙. 多元 LDH 层状双氢氧化物捕集多聚磷酸盐的机制和协同效应[D]. 上海:上海大学,2011.

    4. [4]

      [4] LIU Zhigang,YU Jingjing,LI Tie,et al. Study on the Form of Phosphorus in Urban Sewage Treatment Plant[J]. Water Wastewater Eng,2011,37(2):50-53(in Chinese).刘志刚,虞静静,李轶,等. 城市污水处理厂磷的形态变化规律研究[J]. 给水排水,2011,37(2):50-53.

    5. [5]

      [5] Kulaev I S,Vagabov V,Kulakovskaya T. The Biochemistry of Inorganic Polyphosphates[M]. John Wiley & Sons,2005:90-93.

    6. [6]

      [6] ZHENG Yiyun,ZHOU Boqing,LI Qin. Present Status and Development of Corrosion Inhibitors for Water Treatment[J]. Corros Sci Prot Technol,2004,16(2):101-104(in Chinese).郑逸云,周柏青,李芹. 水处理缓蚀剂应用现状与发展[J]. 腐蚀科学与防护技术,2004,16(2):101-104.

    7. [7]

      [7] XU Wenwen. The Preliminary Study of Polyphosphates on the Quality of Cultured Lateolabrax Japonicus[D]. Zhejiang:Zhejiang Gongshang University,2010(in Chinese).许雯雯. 多聚磷酸盐对养殖鲈鱼品质影响的初步研究[D]. 浙江:浙江工商大学,2010.

    8. [8]

      [8] WANG Yingying,GAO Hua,ZHANG Huizhen,et al. Determination of Polyphosphates in Aquatic Products by Ion Chromatography[J]. Qingdao Univ(E&T),2011,26(2):74-78(in Chinese).王莹莹,高华,张辉珍,等. 离子色谱法测定水产品中的多聚磷酸盐[J]. 青岛大学学报:工程技术版,2011,26(2):74-78.

    9. [9]

      [9] EUROPA Food Safety-Rapid Alert System for Food and Feed(RASFF)[OL]. 2015-08-20.EU. http://ec.europa.Eu/food/food/rapidalert/archive_en.htm.

    10. [10]

      [10] Yao Y,Gao B,Inyang M,et al. Removal of Phosphate from Aqueous Solution by Biochar Derived from Anaerobically Digested Sugar Beet Tailings[J]. J Hazard Mater,2011,190(1):501-507.

    11. [11]

      [11] Xi B,Zhao Y,Zhang L,et al. Return Chemical Sludge Employed in Enhancement of Phosphate Removal from Wastewater[J]. Desalin Water Treat,2014,52(34/35/36):6639-6647.

    12. [12]

      [12] Yao Y,Gao B,Chen J,et al. Engineered Carbon(Biochar) Prepared by Direct Pyrolysis of Mg-accumulated Tomato Tissues:Characterization and Phosphate Removal Potential[J]. Bioresour Technol,2013,138:8-13.

    13. [13]

      [13] Long F,Gong J L,Zeng G M,et al. Removal of Phosphate from Aqueous Solution by Magnetic Fe Zr Binary Oxide[J]. Chem Eng J,2011,171(2):448-455.

    14. [14]

      [14] de-Bashan L E,Bashan Y. Recent Advances in Removing Phosphorus from Wastewater and It's Future Use as Fertilizer(1997-2003)[J]. Water Res,2004,38:4222-4246.

    15. [15]

      [15] HONG Hanlie,MIN Xinmin. Study on the Surface Chemistry of Minerals by Quantum Chemical Method[M]. Wuhan:China University of Geosciences Press,2004:126-130(in Chinese).洪汉烈,闵新民. 量子化学方法研究矿物的表面化学[M]. 武汉:中国地质大学出版社,2004:126-130

    16. [16]

      [16] LIU Fan,JIE Xiaolei,HE Jizheng,et al. Coordination Forms and Transformations of Phosphate Adsorbed by Goethite Surface on Different pH[J]. Acta Pedol Sin,1997,34(4):367-374(in Chinese).刘凡,介晓磊,贺纪正,等. 不同pH条件下针铁矿表面磷的配位形式及转化特点[J]. 土壤学报,1997,34(4):367-374.

    17. [17]

      [17] SONG Kang. Mechanism of Humic Acid Influence the Adsorption of Phosphate on Goethite[D]. Nanjing:Nanjing Normal University,2012(in Chinese).宋康. 腐殖酸对针铁矿吸附磷的影响机理研究[D]. 南京:南京师范大学,2012.

    18. [18]

      [18] Liu H,Chen T,Frost R L. An Overview of the Role of Goethite Surfaces in the Environment[J]. Chemosphere,2014,103:1-11.

    19. [19]

      [19] MAO Yanpeng. The Mechanism and Mathmatical Model Study on the Interaction Between Iron and Phosphate in Water[D]. Ji'nan:Shandong University,2012(in Chinese).毛岩鹏. 水体中铁盐与磷酸盐的相互作用机理及其数学模型研究[D]. 济南:山东大学,2012.

    20. [20]

      [20] Schwertmann U,Cornell R M. Iron Oxides in the Laboratory[M]. New York:Wiley Online Library,1991.

    21. [21]

      [21] Guan X. Adsorption of Phosphates and Organic Acids on Aluminum Hydroxide in Aquatic Environment-Mechanisms and Interactions[D]. Hong Kong:The Hong Kong University of Science Technology,2005.

    22. [22]

      [22] Rashchi F,Finch J A. Polyphosphates:A Review Their Chemistry and Application with Particular Reference to Mineral Processing[J]. Miner Eng,2000,13(10):1019-1035.

    23. [23]

      [23] Gao Y,Mucci A. Acid Base Reactions, Phosphate and Arsenate Complexation, and Their Competitive Adsorption at the Surface of Goethite in 0.7 M NaCl Solution[J]. Geochim Cosmochim Acta,2001,65(14):2361-2378.

    24. [24]

      [24] Liu J,Wan L,Zhang L,et al. Effect of pH, Ionic Strength, and Temperature on the Phosphate Adsorption onto Lanthanum-doped Activated Carbon Fiber[J]. J Colloid Interface Sci,2011,364(2):490-496.

    25. [25]

      [25] Kajiyoshi K,Sakabe Y. Preparation of a Barium Titanate Thin Film on a Porous Titanium Body by the Hydrothermal-Electrochemical Method[J]. J Am Ceram Soc,1999,82(11):2985-2992.

    26. [26]

      [26] LI Ying. Interaction Between Heavy Metals,Humic Acid and Clay Particles in Water[D]. Ji'nan:Shandong University,2010(in Chinese).李颖. 水体中重金属,腐殖酸和粘土颗粒物之间的相互作用研究[D]. 济南:山东大学,2010.

    27. [27]

      [27] Kumar K V,Sivanesan S. Comparison of Linear and Non-linear Method in Estimating the Sorption Isotherm Parameters for Safranin onto Activated Carbon[J]. J Hazard Mater,2005,123(1): 288-292.

    28. [28]

      [28] Foo K Y,Hameed B H. Insights into the Modeling of Adsorption Isotherm Systems[J]. Chem Eng J,2010,156(1):2-10.

    29. [29]

      [29] Soejoko D S,Tjia M O. Infrared Spectroscopy and X Ray Diffraction Study on the Morphological Variations of Carbonate and Phosphate Compounds in Giant Prawn(Macrobrachium Rosenbergii) Skeletons During Its Moulting Period[J]. J Mater Sci,2003,38(9):2087-2093.

  • 加载中
    1. [1]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    5. [5]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    12. [12]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    13. [13]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    14. [14]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    15. [15]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    16. [16]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    17. [17]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

Metrics
  • PDF Downloads(0)
  • Abstract views(686)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return