Citation: ZHANG Ya, ZHENG Jianbin. Graphene Modified Glassy Carbon Electrode for Selective Determination of Metol in the Presence of Hydroquinone[J]. Chinese Journal of Applied Chemistry, ;2016, 33(1): 103-107. doi: 10.11944/j.issn.1000-0518.2016.01.150390 shu

Graphene Modified Glassy Carbon Electrode for Selective Determination of Metol in the Presence of Hydroquinone

  • Corresponding author: ZHANG Ya, 
  • Received Date: 3 November 2015
    Available Online: 5 December 2015

    Fund Project:

  • A graphene modified glassy carbon electrode(GN/GCE) was prepared. The electrochemical behavior of metol at the modified electrode was investigated in 0.5 mol/L HAc-NaAc(pH=4.8) buffer solution by cyclic voltammetry(CV) and square wave voltammetry(SWV), and a novel method for the determination of metol was established. The results show that the redox peak potential difference of metol on GN/GCE is smaller than that on the bare GCE, while the peak current is significantly increased, indicating that the GN/GCE has electrocatalytic activity toward the redox of metol. A linear dependence of the reduction current versus the metol concentration using SWV is obtained in the range of 8.0×10-8~5.0×10-5 mol/L, with a detection limit of 2.0×10-8 mol/L. The concomitant hydroquinone affects on the detection of metol, but the interference can be eliminated by using the SWV method. The proposed method can be used to determine metol in photographic imaging agents.
  • 加载中
    1. [1]

      [1] Andreozzi R,Caprio V,Insola A,et al.The Oxidation of Metol (N-methyl-p-aminophenol) in Aqueous Solution by UV/H2O2 Photolysis[J].Water Res,2000,34(2):463-472.

    2. [2]

      [2] Lunar L,Sicilia D,Rubio S.Degradation of Photographic Developers by Fenton's Reagent:Condition Optimization and Kinetics for Metol Oxidation[J].Water Res,2000,34(6):1791-1802.

    3. [3]

      [3] Lunar L,Sicilia D,Rubio S.Identification of Metol Degradation Products Under Fenton's Reagent Treatment Using Liquid Chromatography-mass Spectrometry[J].Water Res,2000,34(13):3400-3412.

    4. [4]

      [4] LIU Chuanyin,LU Guanghan.Simultaneous Determination of Metol and p-Benzenediol at a 2-Mercaptobenzothiozol Self-assembled Monolayer Gold Electrode[J].Chem Res Appl,2004,16(2):274-275(in Chinese).刘传银,陆光汉.2-巯基苯并噻唑自组装膜电极同时测定米吐尔和对苯二酚[J].化学研究与应用,2004,16(2):274-275.

    5. [5]

      [5] WANG Shengfu,DU Dan,CAI Huocao.Electrocatalysis of Metol at L-Cysteine Self-assembled Monolayers Modified Gold Electrode and Its Application[J].Chinese J Anal Chem,2001,29(11):1288-1291(in Chinese).王升富,杜丹,蔡火操.L-半胱氨酸自组装膜电极对米吐尔的电催化及其分析应用[J].分析化学,2001,29(11):1288-1291.

    6. [6]

      [6] WANG Yuchun,LI Jiangyuan.Electrocatalytic Action of Metol at Modified Glassy Carbon Electrode of Multi-wall Carbon Nanotubes and Its Application[J].Chinese J Anal Chem,2006,34(3):375-378(in Chinese).王玉春,李将渊.米吐尔在多壁碳纳米管修饰电极上的电化学行为及其应用[J].分析化学,2006,34(3):375-378.

    7. [7]

      [7] ZHANG Ya.Electrochemical Behavior of Metol at Ionic Liquid Modified Carbon Paste Electrode and Its Determination[J].J Instrum Anal,2008,27(11):1233-1236(in Chinese).张亚.米吐尔在离子液体修饰碳糊电极上的电化学行为及其测定[J].分析测试学报,2008,27(11):1233-1236.

    8. [8]

      [8] Geim A K,Novoselov K S.The Rise of Graphene[J].Nat Mater,2007,6(3):183-191.

    9. [9]

      [9] Shao Y,Wang J,Wu H,et al.Graphene Based Electrochemical Sensors and Biosensors[J].Electroanalysis,2010,22(10):1027-1036.

    10. [10]

      [10] HE Chunlan,LIU Chenglun,XIE Taiping,et al.Preparation of Graphene and Electrocatalysis Oxidation of p-Hydroquinone at Graphene Modified Electrode[J].Chem J Chinese Univ,2012,33(6):1290-1294(in Chinese).何春兰,刘成伦,谢太平,等.石墨烯的制备及石墨烯修饰电极对p-苯二酚的催化氧化[J].高等学校化学学报,2012,33(6):1290-1294.

  • 加载中
    1. [1]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    7. [7]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    8. [8]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    9. [9]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    18. [18]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    19. [19]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    20. [20]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

Metrics
  • PDF Downloads(1)
  • Abstract views(750)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return